1046. Salts of Amidines and Related Compounds. Part II.¹ An X-Ray Crystallographic Study of S-Methylthiouronium p-Chlorobenzoate: the Constancy of the Amidinium Carboxylate Grouping and its Importance for Protein Conformations.

By (MRS.) OLGA KENNARD and JAMES WALKER.

A further review of the distribution of the melting points of S-arylmethylthiouronium salts of carboxylic acids has fortified the belief that a uniform mechanism underlies the capacity of substances containing the amidinogroup to form characteristic crystalline salts with carboxylic acids. The mode of crystallisation previously predicted has been borne out by a threedimensional X-ray crystallographic study of S-methylthiouronium p-chlorobenzoate.

A survey of recorded carbon-carbon bond lengths in mono- and 1,4-disubstituted benzene rings shows that greater apparent variation occurs in compounds in which anisotropic thermal movements have also been observed.

Other evidence bearing on the mode of crystallisation of amidinium salts of carboxylic acids is discussed, and the relevance of the present work to the participation of the guanidino-group of arginine in the maintenance of conformations in native proteins is noted.

IN a previous communication ¹ one of us drew attention to the use of carboxylic acids for the characterisation of amidines unsubstituted in the amidino-group. This procedure was, of course, analogous with, and complementary to, the established use of S-benzylthiouronium salts for the characterisation of carboxylic acids, as the salt-forming amidinogroup is common to both amidines and isothioureas. In considering this ready crystallisation of the carboxylic acid salts of amidines and isothioureas, to which may be added isoureas and guanidines, it was noted that resonance in the cation (I) was complementary to that in the anion (II), and it was suggested that ionic bonds were formed simultaneously between the two oxygen atoms sharing the negative charge in the carboxylate ion and the two nitrogen atoms sharing the positive charge in the amidinium group. Furthermore, the coplanarity of the seven atoms comprising the amidinium group, arising as a conse-

quence of resonance stabilisation, led to the representation (III) for the amidine salt of a carboxylic acid, in which the seven atoms of the amidinium group, the three atoms of the ionised carboxyl group, and the respective atoms to which these groups are linked, *i.e.*, twelve atoms altogether, are coplanar and assume a relatively rigid configuration of minimum potential energy, the implicit hydrogen bonds being short and relatively strong. Such association *in solution* into doublet ion-pairs of a relatively rigid oriented type was considered to be the prelude to the formation of crystalline aggregates, which proceeded by hydrogen bonding between the lateral amidinium hydrogen atoms and the oxygen atoms of carboxylate groups in neighbouring doublet ion-pairs. A survey of the literature showed that the melting points of an extensive and heterogeneous range of S-benzyl-, 4-substituted S-benzyl-, and S-1-naphthylmethyl-thiouronium salts of carboxylic acids

¹ Walker, J., 1949, 1996; that paper is to be regarded as Part I.

covered only a small range of temperature, which suggested that the forces which held crystals of this type together were comparable in strength throughout the series and that the radicals attached to the $-S \cdot C(NH_2) \cdot NH_2^{\oplus}$ and the $-C(\cdot O) \cdot O^{\ominus}$ groups, respectively, made little or no contribution to the stability of the crystal. As purely chemical studies could not supply the proof of these suggestions, or show how hydrogen-bonding between the hypothetical doublet ion-pairs could be effected to give a three-dimensional structure, X-ray diffraction evidence was sought and is described below.

In the earlier work ¹ the 193 known S-benzyl-, S-4-bromobenzyl-, S-4-chlorobenzyl-, and S-4-nitrobenzyl-thiouronium salts of carboxylic acids showed a mean melting point of 154° with a standard deviation of 18° , while the 149 known salts of the same bases with

FIG. 1. Distribution of m. p.s of arylmethylthiouronium salts of carboxylic and sulphonic acids.

- Distribution of m. p.s (to end of 1959) of 998 S-benzyl- (772), S-4-bromobenzyl-(61), S-4-chlorobenzyl- (36), S-4-nitrobenzyl- (49), S-2,4-dinitrobenzyl- (34), S-1-naphthylmethyl- (42), and S-benzimidazol-2-ylmethyl-thiouronium (4) salts of carboxylic acids.
- Distribution of m. p.s (to end of 1947) of 221 S-benzyl-, S-4-bromobenzyl-, S-4chlorobenzyl-, S-4-nitrobenzyl-, and S-1-naphthylmethyl-thiouronium salts of carboxylic acids.
- Distribution of m. p.s (to end of 1947) of 149 S-benzyl-, S-4-bromobenzyl-, S-4-chlorobenzyl-, and S-4-nitrobenzyl-thiouronium salts of sulphonic acids.
- ------ Theoretical normal curve for distribution of m. p.s of a sample of 998 salts having mean m. p. 152° with standard deviation 22°.

sulphonic acids showed a mean melting point of 165° with a standard deviation of 46° , indicating a less uniform pattern for the crystallisation of the salts formed with sulphonic acids. We have not taken our review of the salts of sulphonic acids further, but a large number of salts of carboxylic acids has been described in the interval. Up to the end of 1959, 1006 S-benzyl-, S-4-bromobenzyl-, S-4-chlorobenzyl-, S-4-nitrobenzyl-, S-2,4dinitrobenzyl-, S-1-naphthylmethyl-, and S-benzimidazol-2-ylmethyl-thiouronium salts * had been described and the distribution of their melting points is analysed in Table 1 and in Fig. 1.

* These were traced through *Chemical Abstracts* and checked with the original literature sources whenever possible. Eight salts were omitted from further consideration, because either (i) melting points recorded by different observers showed considerable divergence, or (ii) poor analytical criteria were recorded, or (iii) a wide melting range was given.

TABLE 1.

Distribution of melting points of (A) S-benzyl-, (B) S-4-bromobenzyl-, (C) S-4-chlorobenzyl-, (D) S-4-nitrobenzyl-, (E) S-2,4-dinitrobenzyl-, (F) S-1-naphthylmethyl-, and (G) S-benzimidazol-2-ylmethyl-thiouronium salts of carboxylic acids, RS·C(:NH)·NH₂, R'·CO₂H, showing the numbers of salts having melting points within the stated ranges.

M. p. range	Α	в	С	D	E	F	G	Totals
6070°	2	0	0	0	0	0	0	2
70	0	0	0	1	0	0	0	1
80-90	4	0	0	0	0	0	0	4
90	3	0	0	0	0	0	0	3
100110	10	0	0	0	1	0	0	11
110-120	28	0	0	2	0	0	0	30
120-130	79	0	0	1	4	0	0	84
130140	117	8	3	6	5	2	0	141
140150	153	19	11	11	3	4	0	201
150160	149	20	9	8	4	9	3	202
160-170	108	10	9	6	5	10	1	149
170-180	56	2	3	4	3	7	0	75
180190	28	1	0	4	4	7	0	44
190200	18	1	1	2	2	1	0	25
200-210	6	0	0	2	1	1	0	10
210-220	5	0	0	0	0	0	0	5
220-230	3	0	0	1	0	1	0	5
230 - 240	2	0	0	0	0	0	0	2
240-250	1	0	0	0	1	0	0	2
250 - 260	0	0	0	0	1	0	0	1
Over 260	0	0	0	1*	0	0	0	1
Totals	772	61	36	49	34	42	4	998
Mean m. p	150°	15 3°	156°	157°	162° (157° †)	168° (166° ‡)		152°
Standard deviation	22°	12°	1 3 °	26°	33° (25° †)	18° (16° ‡)	→	22°
* M. p. 293°, c	mitted	from stati	istical	analysis.	† Two salts	of m. p. al	Э	° omitted

[‡] Salt of m. p. 220° omitted.

Table 1 shows the distribution of the melting points of these salts under the headings of the seven bases concerned and the aggregates are also given. Except for the S-benzimidazol-2-ylmethylthiouronium salts, where the sample size was insignificant, each column has been analysed statistically, and the degree of correspondence of the mean melting points for the benzyl-, S-4-bromobenzyl-, S-4-chlorobenzyl-, and S-4-nitrobenzylthiouronium salts is noteworthy. The mean melting point (162°) of the S-2,4-dinitrobenzylthiouronium salts became of a similar order (157°) when two relatively high-melting salts were disregarded, illustrating the marked weighting effect of one or two isolated representatives on the wings on the statistical analysis. The mean melting point (168°) calculated for the 42 S-1-naphthylmethylthiouronium salts was also higher than the general mean, and this could be due either to a real difference or to an accidental circumstance of the fairly small number available for statistical analysis. Fig. 1 shows the melting-point distribution for 998 salts of carboxylic acids in the form of a histogram and includes the results of the previous survey ¹ for comparison; it also shows the calculated curve for a normal distribution of the sample size (998), mean (m. p. 152°), and standard deviation (22°) found experimentally. The excellence of the fit of the theoretical normal distribution curve to the experimental results and the degree of symmetry of the latter about the mean are striking, and show clearly that a uniform mechanism underlies the crystallisation of these salts. It should also be noted (Table 1) that, while the great majority were S-benzylthiouronium salts (772), five other bases were represented to significant extents; the carboxylic acids involved in the formation of these salts were, however, a completely heterogeneous series, as every available recorded salt of a carboxylic acid with these bases has been considered. The uniformity of crystalline pattern we therefore consider to be a function of the amidinium and the carboxylate group which are common throughout the series, and we consider the radicals to which these groups are respectively linked to make an insignificant contribution to the stability of the crystals. Although it has been noted by various authors² that the melting points of S-benzyl-thiouronium salts may vary with the rate of heating these variations are not of sufficient magnitude to affect appreciably the present treatment * of the data, which were obtained from the sources cited in the Appendix.

While the general picture concerning the melting points shown by compounds of this type is as shown in Table 1 and Fig. 1, significant trends were observable in particular groups. For example, comparison of the S-benzylthiouronium salts of the o-, m-, and p-bromo-, -chloro-, -methoxy-, -nitro-, -amino-, -2'-methoxyethoxy-, -2'-ethoxyethoxy-, -2'-butoxyethoxy-, -2'-phenoxyethoxy-, and -2'-2''-butoxyethoxyethoxy-benzoic acids and the toluic acids showed that the salt of the p-substituted acid had the highest melting point within each group, but with the hydroxybenzoic acids the *m*-substituted compound had the highest melting point. Among the S-4-bromo- and S-4-chloro-benzylthiouronium salts of the o-, m-, and p-bromo-, -chloro-, and -iodo-benzoic acids and the toluic acids there was only one exception to the rule that the salt of the p-substituted acid had the highest melting point in each group. Another trend was noted during the collection of data when the number of salts having melting points in the 120–130° range suddenly forged ahead and reached a level ahead of expectation. This was due to the melting points of the S-benzylthiouronium salts of 17 acids of the type H·[CH2]n·CMe2·CH2·CO2H,3 eleven of which had melting points in this particular range; this series also showed in part the alternation frequently noted in homologous series, although the same feature was less marked with the S-benzyl- and S-1-naphthylmethyl-thiouronium salts, and not at all with the known S-4-bromobenzylthiouronium salts, of the n-fatty acids. Although the S-benzyl- and substituted S-benzyl-thiouronium salts of carboxylic acids show a restricted melting-point range, and melting points should not be relied upon alone as criteria for the identification of acids, the presence of the heteroatoms (S, N) helps to make ultimate elementary analysis diagnostic, and the salts lend themselves to non-aqueous titration; ^{2b} their identification by means of X-ray powder diffraction patterns has also been employed.4

In course of determining the crystallographic constants ⁵ of a range of amidinium salts

chief cont dimensions of typical animum carboxylates.													
Substance	a (Å)	b (Å)	c (Å)	α	β	γ	D_m *	D , *	Ζ	Space group			
Benzamidinium benzoate	28.9	35.8	9.9				1.25	1.25	32	Ccc2			
3,5-Dibromobenzamidin-													
ium benzoate	15.21	9.64	12.34	110°	110°	100·7°	1.755	1.77	4	$P1 \text{ or } P\overline{1}$			
3,5-Dibromobenzamidin-													
ium 3,5-dibromo-													
benzoate	$23 \cdot 8$	$32 \cdot 1$	4.85				$2 \cdot 10$	2.00	8				
S-Methylthiouronium													
benzoate	9.52	20.29	5.61				1.28	1.30	4	P2,2,2,			
S-Methylthiouronium													
p-bromobenzoate	9.505	5.61	22.556		103·22°		1.625	1.651	4	$P2_1/c$			
S-Methylthiouronium										1			
p-iodobenzoate	9·40	5.61	$23 \cdot 55$		101·5°		1.82	1.85	4	$P2_1/c$ or $P2/c$			
	* In g./c.c.												

TABLE 2.

Unit-cell	dimensions	of typi	cal amid	inium car	howwlate
Unit-Cen	unnensions	OI LVDI	uar annu		DUXVIALES

* Where the same salt has been described from more than one laboratory the mean m. p. was taken, when the individual observations agreed within a few degrees, or the m. p. showing maximum agreement between authors was taken in a few cases where an isolated observation stood out from the others.

² E.g., (a) Kass, Nichols, and Burr, J. Amer. Chem. Soc., 1942, **64**, 1061; Crombie and Jacklin, J., 1955, 1740; Berger and Uldall, Acta Chem. Scand., 1962, **16**, 1811; (b) Berger, *ibid.*, 1954, **8**, 427; Friediger and Pedersen, *ibid.*, 1955, **9**, 1425.

³ Kimura and Tanaka, Chem. Pharm. Bull. (Japan), 1958, **6**, 9.

⁴ Morita and Miles, Analyt. Chem., 1956, 28, 1081.

⁵ Kennard and Walker, Acta Cryst., 1961, 14, 91.

of carboxylic acids it was noted that these compounds showed a marked physical similarity in the appearance of the crystals, which were usually tabular with a prominent cleavage, indicating the presence of alternate strong and weak directional binding forces. The unitcell dimensions, which are summarised in Table 2, varied considerably, however, ranging from benzamidinium benzoate with 32 ion-pairs in an orthorhombic cell to 3,5-dibromobenzamidinium benzoate with 4 ion-pairs in a triclinic cell. The isomorphous S-methylthiouronium p-chloro- and p-bromo-benzoates were chosen as most suitable for detailed analysis.* These salts were of additional interest in that they offered the possibility of an accurate determination of the paraffinic carbon-sulphur bond length for bivalent sulphur, as relatively few accurate values for this bond length had been reported in the literature.⁶

EXPERIMENTAL

The crystals of S-methylthiouronium p-chlorobenzoate ⁵ were mostly in the form of opaque tablets with marked striations parallel to the b-axis, which was also the direction of elongation. The tablets cleaved readily parallel to the (00l) plane. Cell dimensions were derived from layer-line spacings on rotation photographs taken about the b-axis, and from the 0,0,18 and 10,0,0 reflexions by using the θ method? for the other two axes and for the β angle. The density was measured at room temperature by centrifuging the crystals in a continuousgradient-density column ⁸ calibrated with suitable liquids.

The crystal data were: S-Methylthiouronium p-chlorobenzoate; $C_2H_6N_2S, C_7H_5ClO_2$; M = 246.6; m. p. 210–211° (decomp.). Monoclinic, $a = 9.505 \pm 0.005$, $b = 5.61 \pm 0.01$, $c = 22 \cdot 176 \pm 0.010$ Å, $\beta = 103 \cdot 22^{\circ} \pm 0.05^{\circ}$, U = 1151 Å³, $D_m = 1.41 \pm 0.01$ g./c.c., Z = 4, $D_c = 1.422$ g/c.c. Absorption coefficient for X-rays ($\lambda = 1.5418$ Å), $\mu = 44$ cm⁻¹. Electrons per unit cell = F(000) = 512. Space group, $P2_1/c$. Reflexions absent for hol when l odd, and for 0k0 when k odd.

Three-dimensional data were collected from an approximately cylindrical crystal (diameter, 0.16 mm.; length, 0.16 mm.). Weissenberg equi-inclination photographs were taken with $\operatorname{Cu}-K_{\alpha}$ radiation for five layer lines about the *a*- and four about the *b*-axis. The *k0l* intensities were also derived from oscillation photographs of a very small crystal (<0.05 mm.) by using time-exposures on the same film pack. These intensities were correlated with the threedimensional data. The intensities were measured on multiple film-packs by matching the reflexions visually against standard intensity charts. With the particular crystals used there was no marked change in spot-shape with equi-inclination angle, and no corrections were made for absorption or extinction. Only two reflexions, a very strong one from the plane (200) and a medium one from (100), appeared to have suffered markedly from extinction effects and these two planes were, therefore, omitted from the final stages of refinement. In all, 1066 non-equivalent reflexions were observed. The Lorentz and polarisation corrections were applied with a reciprocal chart,⁹ and the intensities, F_0^2 , were correlated and scaled by means of Wilson ¹⁰ plots of the basal reflexions. The square-roots of these values, $|F_0|$, were used in the structure analysis, and the factor converting them to an absolute scale was improved throughout this work, at first by making $\sum |F_o| = \sum |F_c|$ (with allowance for multiplicity) and later during the anisotropic refinement by including the scale factor as one of the variable parameters. The final scale factor was 0.79 times that derived from statistical tests.

During the two-dimensional analysis a desk computer was used in conjunction with Beevers-Lipson strips for the electron-density summations and specially prepared strips for structurefactor calculations. The three-dimensional isotropic refinement was carried out at the University of Manchester on a Ferranti mark I computer, and the anisotropic refinement on the Pegasus computer of the University of Leeds. The atomic scattering factors used were those

- ⁶ (a) Cox and Jeffrey, Proc. Roy. Soc., 1951, A, 207, 110; (b) Abrahams, Quart. Rev., 1956, 10, 407. ⁷ Weisz, Cochran, and Cole, Acta Cryst., 1948, 1, 83.
- ⁸ Low and Richards, J. Amer. Chem. Soc., 1952, 74, 1660.
- ⁹ Cochran, J. Sci. Instr., 1948, 25, 253. ¹⁰ Wilson, Nature, 1942, **150**, 152.

^{*} A brief account of work on the p-bromobenzoate was given at the 3rd International Congress of Crystallography, Paris, July 1954 (Kennard and Walker, Resumés des Communications, p. 33; Acta Cryst., 1954, 7, 646).

given by McWeeny¹¹ for carbon, oxygen, and nitrogen, and by James and Brindley¹² for sulphur and chlorine, multiplied by appropriate temperature factors. These theoretical scattering factors are independent of the thermal and bonding properties found in particular structures ¹³ and permit greater flexibility in refining the positional and thermal parameters. The three-dimensional calculations occupied a total computer time of 42.5 hours, and we are greatly indebted to Dr. D. W. J. Cruickshank and Miss Diana Pilling for the programmes used and for carrying out the computations.

FIG. 2. Electron-density projection on a plane normal to the *b*-axis. (Each contour corresponds to a density interval of $1 \text{ e}^{A^{-2}}$; the one-electron line is omitted.)

FIG. 3. Numbering of atoms in doublet ion-pair, and of significant symmetry related atoms.

Structure Analysis.—Two-dimensional refinement. The best view of the structure was to be expected from a projection down the short b-axis. The approximate positions of the light atoms in this projection were derived from the isomorphous bromobenzoate ⁵ by the heavy-atom method. With these co-ordinates as a starting-point the (h0l) projection of the chlorobenzoate was gradually refined through a series of Fourier and Fourier-difference maps, till all atoms, except hydrogen, appeared fully resolved.

The predicted type of structure ¹ was readily discernible, and Fig. 2 shows the electrondensity distribution in the doublet ion-pair which is steeply inclined to the plane of projection. The numbering of the atoms in the doublet ion-pair, and of significant symmetry related atoms.

¹¹ McWeeny, Acta Cryst., 1951, 4, 513.

¹² James and Brindley, "International Tables for the Determination of Crystal Structures," Borntraeger, Berlin, 1935.

¹³ Cf. Cox, Gillot, and Jeffrey, Acta Cryst., 1949, 2, 356; Abrahams, ibid., 1955, 8, 661.

is shown in Fig. 3. The benzene ring is rotated about the chlorine-sulphur axis out of the plane cutting the plane of projection and having the chlorine-sulphur axis as its line of greatest slope. The carboxylate and amidinium groups are similarly rotated through several degrees. The elliptical contours around some of the atoms indicate considerable variations in the mean square vibration of these atoms in different directions. The chlorine atom in particular appears to execute a marked oscillation perpendicular to the $Cl-C_1$ bond and anisotropic thermal corrections had to be introduced in the structure-factor calculations at a comparatively early stage in the two-dimensional refinement.

The application of the heavy-atom technique to the other two projections was less straightforward. The contribution of the halogen atom to about half of the reflexions was very small since the y-co-ordinate, deduced from Patterson maps, was found to be close to b/4. In addition the directions of projection resulted in considerable overlap of the various atoms, expecially on the c-axis projection where the doublet ion-pairs are viewed almost end-on. Finally, there was, at this stage, some uncertainty about the z-co-ordinates, since the b-axis projection does not distinguish between structures where the origin is placed at a centre of symmetry or at a

FIG. 4. (A) Electron-density projection on a plane normal to the c-axis (contours at arbitrary intervals). (B) Electron-density projection on a plane normal to the a-axis (contours at arbitrary intervals).

screw axis.¹⁴ Initially, therefore, both alternatives had to be considered in the structurefactor calculations until one set of co-ordinates gave significantly better results. In spite of the considerable overlap of atoms in these projections the analytical application of Fourier difference maps ¹⁵ proved unexpectedly powerful in locating the positions of the light atoms and led to reasonable agreement between the observed and calculated structure factors. The reliability factor, R, defined as $\sum |\langle |F_o| - |F_c| \rangle| / \sum |F_o|$, was reduced, at the end of the two-dimensional refinement, to 23% for each of the three basal zones of reflexions. In this sum, reflexions too weak to be observed were included as half the minimum observable value. Figs. 4A and B illustrate the resolution obtained in the electron density maps of the structure projected on (hk0) and (0kl).

Three-dimensional refinement (isotropic). Although the general features of the structure were clear from the three axial projections, the standard deviations of co-ordinates were high and no reliable deductions could be based on the bond-length values. With the availability of electronic computing facilities, however, a full three-dimensional analysis, utilising the 1064

 ¹⁴ Donohue and Trueblood, Acta Cryst., 1956, 9, 960.
 ¹⁵ Cf. Lipson and Cochran, "The Crystalline State. Vol. III. The Determination of Crystal Structures," G. Bell and Sons, Ltd., London, 1953, pp. 298 et seq.

observed *hkl* terms, became possible. The atomic co-ordinates were refined by calculation of differential syntheses ¹⁶ with backshift corrections to allow for finite series effects. In the first three cycles the atomic scattering factors were modified by a temperature factor in the form exp $(-B \sin^2 \theta/\lambda^2)$ (for $\lambda = 1.5418$ Å) and the value of the numerical factor B was adjusted at each stage so as to reduce the difference between the observed and the calculated peak values of the electron-density distribution and the observed and the calculated mean curvatures $(\sigma^2 \rho / \sigma x_i^2)$. The B factor used in the first cycle was derived from statistical tests of the *h0l* reflexions, and, as shown in Table 3, represented a reasonable approximation. Table 3 shows

TABLE 3.

Progress of isotropic refinement of S-methylthiouronium p-chlorobenzoate.

		Ter	nperati	ire fac	tor, <i>B</i> (Å-	·1)	Scale	Reliability	Max	devn. of
Cycle	Cl	S	0	N	C _{1, 2, 6, 9}	C3. 4. 5. 7. 8	factor	R (%)	shift (Å)	co-ordinates
I1	1.6	1.6	1.6	1.6	1.6	1.6	0.829	26.4	$N_{2} y = 0.17$	0.019
I_2	1.80	1.63	1.70	1.68	1.68	1.68	0.827	19.5	$C_1 y + 0.035$	0.018
I 3	2.30	1.68	1.90	1.80	2.10	1.68	0.9375	16.8	$C_{9} y + 0.027$	0.018

the progress of three cycles of isotropic refinement. A difference map calculated with the structure factors derived from the third cycle of the three-dimensional refinement indicated clearly that little further improvement could be expected from co-ordinate shifts alone and that allowances had to be made for the marked anisotropic vibrations of the majority of the atoms.

Three-dimensional refinement (anisotropic). Cruickshank¹⁷ has shown that when the thermal displacement of an atom varies with direction the spherical distribution of displacement must be replaced by an ellipsoidal distribution. The directional variation of thermal oscillation for atoms in the present structure is evident from Table 4, which shows the ratios of the observed and the calculated electron-density curvatures along the three crystallographic axes. An allowance can be made for this effect by replacing the isotropic temperature factor, exp $(-B^2 \theta/\lambda^2)$, by the expression

$$\exp - (b_{11}h^2 + b_{12}hk + b_{13}hl + b_{22}k^2 + b_{23}kl + b_{33}l^2)$$

and the six thermal parameters, b_{ij} , can be included in the differential synthesis together with the scale factor. The course of four cycles of anisotropic refinement is shown in Table 5. The hydrogen atoms were included in these calculations, having been placed in chemically acceptable positions; the length of the C-H bond was assumed as 0.95 Å in the first cycle and 1.05 Å subsequently.

The observed values of the structure factors, F_0 , were weighted by a factor, $\omega = 1/(a + bF_0 + cF_0^2)$ in which a = 8.0, b = 1.0, c = 1/128, to allow for experimental errors in the measurement of intensities. In the final cycle (A₄) the influence of possible experimental inaccuracies on the interatomic distance values was examined by carrying out a second set of calculations in which 18 planes which showed maximum disagreement with calculated values were omitted. The two sets of calculations gave reliability factors of 10.13% and 9.46%, but no systematic variations were found in the interatomic distances derived from the two sets of calculations, and the differences between the two sets were always less than the standard deviations are listed in Table 6, the thermal parameters are given in Table 7, and the observed and calculated structure factors in Table 8; the standard deviations were calculated by Cruick-shank's method.¹⁸

All interatomic distances less than 4 Å were calculated on the Mercury computer of the University of London Computing Centre; no abnormally short non-bonded distances were observed, except possibly the distance of 3.54 Å between the chlorine atom and a sulphur atom in a neighbouring unit cell, which is slightly less than the sum (3.65 Å) of the respective van

¹⁶ Booth, Trans. Faraday Soc., 1946, 42, 44; Proc. Roy. Soc., 1946, A, 188, 77.

¹⁷ Cruickshank, Acta Cryst., 1956, 9, 747.

¹⁸ Cruickshank, Acta Cryst., 1949, 2, 65.

TABLE 4.

Observed electron density, ratio of observed to calculated electron density, and ratios of observed and calculated electron density curvatures along the three crystal axes (isotropic refinement, cycle I_3).

		ρ_{o}	Po/Pc	$\boldsymbol{r}(\boldsymbol{x}_i)$	$\mathbf{r}(y_i)$	$\mathbf{r}(z_{j})$		ρο	$\rho_{\rm o}/\rho_{\rm c}$	$r(x_i)$	$r(y_i)$	$r(z_i)$
Cl	. 	20.632	0.956	0.828	0.997	1.034	Са	7.088	1.023	1.035	1.045	1.042
S	· • • • • • •	$25 \cdot 447$	1.027	1.031	1.003	1.044	C4	8.037	1.059	1.078	1.018	1.114
01	. 	10.502	1.021	1.163	0.991	1.019	C ₅	6 ∙935	0.990	0.995	1.032	1.024
0,		10.061	0.987	1.114	0.944	1.003	C ₆	6.783	1.023	1.049	1.024	1.020
N_1		$9 \cdot 211$	1.058	1.161	1.116	1.032	C ₇	7.789	1.034	1.166	1.125	1.103
N_2		8.358	0.992	1.038	0.957	0.967	C ₈	7.726	1.040	1.119	0.942	1.053
C_1		6.906	1.003	0.921	1.042	1.027	C ₉	5.922	1.022	0.996	0.925	0.999
С,		6.481	1.049	0.991	$1 \cdot 142$	1.096						

 ρ_0 , Observed electron density; ρ_c , calculated electron density; $r(x_i)$, $r(y_i)$, $r(z_i)$, ratio of observed and calculated electron density curvatures along the x-, y-, and z-axes.

TABLE 5.

Progress of anisotropic refinement of S-methylthiouronium p-chlorobenzoate.

Cycle	Scale factor	Reliability factor, R (%)	Max. shift (Å)	Standard devn. of positional co-ordinates
A1	0.8868	14.4	$C_{s} z - 0.0328$	0.0137
A	0.8192	11-1	$C_{3}^{"}x + 0.0323$	0.0132
A.	0.8014	10.2	$C_{8} x = 0.0197$	0.0100
A4	0.7904	10.1	$C_{6}z + 0.0077$	0.0118

TABLE 6.

Final atomic co-ordinates and standard deviations (Å).

		Co-ordinates		Standard deviations						
	x	y	z	x	y	z				
Cl	2.1777	1.4065	10·3688	0.0045	0.0036	0.0034				
S	$2 \cdot 1471$	3.8416	$18 \cdot 8868$	0.0031	0.0031	0.0030				
O ₁	3.3913	6.0616	$15 \cdot 2523$	0.0064	0.0074	0.0074				
0,	1.3479	5.3762	$15 \cdot 4954$	0.0065	0.0083	0.0080				
N,	3.3696	$2 \cdot 4822$	$17 \cdot 1659$	0.0075	0.0086	0.0088				
N,	1.1832	1.8716	17.2517	0.0082	0.0097	0.0096				
C ₁	$2 \cdot 2343$	2.5568	11.6936	0.0133	0.0124	0.0108				
C,	3.1289	3.5591	$11 \cdot 8231$	0.0127	0.0100	0.0116				
С	3.1795	4.4506	12.9062	0.0110	0.0112	0.0113				
С,	$2 \cdot 2928$	4.3205	$13 \cdot 8024$	0.0094	0.0107	0.0101				
C,	1.4006	$3 \cdot 2825$	13.6244	0.0114	0.0111	0.0107				
C _a	1.3409	$2 \cdot 3547$	12.5681	0.0126	0.0142	0.0118				
C,	2.3474	5.3277	14.9170	0.0090	0.0109	0.0099				
C ₈	2.2747	2.6711	17.6524	0.0097	0.0112	0.0098				
C ₀	3.5816	4·9180	$18 \cdot 8146$	0.0120	0.0122	0.0122				

TABLE 7.

Components of thermal vibration coefficients (b_{ij}) ; anisotropic refinement, cycle A₄.

	b_{11}	b22	b 33	b_{12}	b13	b23
Cl	0.00380	0.00546	0.00030	0.00088	0.00050	-0.00066
S	0.00175	0.00418	0.00030	0.00015	0.00064	-0.00018
0,	0.00090	0.00455	0.00035	-0.00018	0.00034	-0.00038
O	0.00108	0.00544	0.00042	-0.00128	0.00071	-0.00105
N,	0.00096	0.00313	0.00036	-0.00015	0.00037	-0.00033
N	0.00099	0.00497	0.00037	-0.00045	0.00035	-0.00048
C,	0.00284	0.00467	0.00022	0.00076	0.00010	-0.00027
C	0.00234	0.00332	0.00032	0.00054	0.00073	-0.00030
Č.	0.00142	0.00453	0.00032	0.00013	0.00034	0.00008
C	0.00102	0.00403	0.00026	-0.00042	0.00029	-0.00017
C	0.00205	0.00360	0.00026	-0.00015	0.00030	0.00022
C.	0.00222	0.00600	0.00031	-0.00097	0.00042	-0.00039
C,	0.00089	0.00430	0.00027	0.00130	0.00014	0.00034
С	0.00119	0.00419	0.00025	0.00108	0.00018	0.00032
C ₈	0.00180	0.00458	0.00035	-0.00059	0.00037	-0.00057

TABLE 8.

Observed and calculated structure factors and weighted differences for S-methylthiouronium p-chlorobenzoate on ten times the absolute scale.

h k l 000	F ₀	F_{c} 5120	$\omega F_{o} - F_{c} $	h k l 8	F ₀ 85	F _c 57	$\omega F_{o} - F_{c} $	h k	l 9	$ F_{0} $ 486	Fc 449	$\omega F_{o} - F_{c} $	h k	1 10	F ₀ 77	F _c 79	$\omega F_0 - F_c = 0$
4 6 8	65 590 201	61 609 	1 2 1	$\begin{array}{c} 10 \\ 12 \end{array}$	85 77	-20^{73}	3 13		876	$350 \\ 376 \\ 182$	-330 -345 -176	2 4 1		$\frac{11}{12}$	58 77 77	59 80 79	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$
10 12 16 18 20 22 24	201 408 305 247 85 97 79	-200 -432 -323 -232 -68 -89 -46	0 3 2 2 4 2 8	$\begin{array}{cccc} 0 & 6 & 0 \\ & 2 \\ & 5 \\ & 10 \\ & 12 \\ 0 & 7 & 4 \end{array}$	52 77 91 91 104 39	-52 -58 -91 -31 40 -46	0 4 0 13 13		5486110	318 855 273 428 206 234	292 873 253 402 202 - 218	3 1 3 1 2	15	1 2 3 4 5 6	110 97 110 77 97 58	-115 -96 115 -104 114 -57	1 0 1 6 4
24	85	92	2	166	85	105	5	10	$\frac{\overline{26}}{\overline{22}}$	65 130	$^{67}_{-128}$	0 0		7 10	77 77 77	-72 88	1 3
$\begin{array}{c}0&1&1\\&&2\\&&3\end{array}$	$142 \\ 130 \\ 925$	164 129 1160	4 0 15	4 2 1	91 123 71	$ \begin{array}{r} 101 \\ -143 \\ 103 \end{array} $	2 4 8		$\frac{20}{18}$ $\frac{16}{16}$	71 369 130	87 387 —115	4 2 3		11 13	71 117	48 29	6 18
4 5 6		678 	1 4 0	$1 5 \overline{10} \overline{9}$	$110 \\ 58$	-114 44	1 4		$\frac{14}{12}$ 10	$292 \\ 376 \\ 488$	-264 382 -537	4 1 5	16	1 4 7	65 65 77	$-97 \\ -72 \\ -76$	8 2 0
7 8	493 305	$ \begin{array}{r} 489 \\ -263 \\ 120 \end{array} $	0	7	77 58	87 82	26		867	454 207	$-473 \\ -236 \\ 450$	2 5 0	0.7	10 रू	65	-20	11
9 10 11	$169 \\ 577 \\ 156$	$-139 \\ 552 \\ -124$	5 2 6	5 4 2	$149 \\ 77 \\ 123$	-164 112 131	3 8 2		4 2 2	396 104 104	$ \begin{array}{r} 452 \\ 141 \\ -111 \end{array} $	8 2	25	15 17	97	-80	4
$12 \\ 13 \\ 15$	428 71	399 - 66 - 103	3 1 3	1 0	$\begin{array}{c} 58 \\ 156 \end{array}$	68 184	2 5		4 8	305 395 479	- 342 418 508	5 3 3		15 10 3	$110 \\ 110 \\ 110$	$ \begin{array}{r} 100 \\ -100 \\ -118 \end{array} $	2 2 2
16 20	182 58	$-163 \\ -49$	32	$1\ \overline{4}\ \overline{13}\ \overline{12}$	$\begin{array}{c} 77\\110\end{array}$	$-74 \\ -126$	1 3		12 14	564 285	-586 295	2 1		Ĭ 0	65 110		$\tilde{\tilde{5}}$ 1
21 22	85 240	-76 -237	2 0	$\frac{11}{10}{\frac{9}{9}}$	156 110 77	$-143 \\ -129 \\ 78$	2 4 0		16 18 24	$ \begin{array}{r} 123 \\ 247 \\ 53 \end{array} $	$-270 \\ -34$	0 3 5	2 4	$\frac{15}{12}$	$123 \\ 142$	114 128	2 3
020	142 221	-128 - 211	3 1	877	$162 \\ 182 \\ 117$	$-163 \\ -189 \\ 122$	0 1 2		26 1	58 59	- 52	2		9 7 7	162 85 136	$ 180 \\ -100 \\ -155 $	3 4 4
3 4	259 207	- 055 274 178	2 5	54	136 130	-133 -135	2 1		23	207 136	$-183 \\ -126$	4 2		1 1	$110 \\ 221$	$-115 \\ 249$	1 4
5 6 7	447 58 104	- 398 - 28 111	5 8 2	$\frac{3}{1}$	$\frac{201}{117}$	-133	2 3		4 5 6	$1304 \\ 635 \\ 247$	$-1469 \\ -615 \\ 253$	8 2 1	2 3	0 26	221 20	-213 -40	6
8 9	376 233	- 359 219	2 2	$1 \ \overline{3} \ \overline{25} \ \overline{24} \ \overline{16}$	26 39	$ 28 \\ -45 \\ 120 $	1 2 2		7	58 272	61 240	1 4 2		23 17 15	110 117	-12 109	20 2
10 12 15	$ 32 \\ 104 $	442 56 	7 1	$\frac{16}{15}$	$130 \\ 143 \\ 182$	$-159 \\ -152 \\ 181$	2 0		11 12	65 273	$-508 \\ -52 \\ 258$	3 2		$\frac{13}{13}$	$102 \\ 71 \\ 123$	-127 62 -109	2 3
16 18 19	$227 \\ 123 \\ 130$	224 116 	0 2 0	13 12 11	$ \begin{array}{r} 85 \\ 188 \\ 32 \end{array} $	90 186 27	1 0 1		13 14 15	$136 \\ 253 \\ 221$	117 244 -182	4 1 6		$\frac{12}{11}{\frac{9}{9}}$	$253 \\ 175 \\ 91$	256 162 74	0 2 4
22 26	39 45	-17 - 49	6 1	19	123 26	-118 - 16	1 3		17 20	$\frac{156}{110}$	$128 \\ 132$	5 5		877	$194 \\ 285 \\ 189$	183 - 263	23
$\begin{smallmatrix} 0 & 3 & 1 \\ & & 2 \end{smallmatrix}$	123 97	$ \begin{array}{r} 103 \\ -82 \end{array} $	4 3	65	188 318	-200 -200 322	3 2 0	12	1 2	$156 \\ 292$	$-144 \\ -310$	2 2		54	$\frac{182}{234}$	209 262	4 1
3 4 5	85 350 207	-75 -380 -205	2 4 0	4 2 1	311 110 91	-346 - 130 - 123	4 4 7		3 4 5	$ 182 \\ 130 \\ 26 $	$ \begin{array}{r} 184 \\ -129 \\ 23 \end{array} $	0 0 1		3 2 1	$ \begin{array}{r} 194 \\ 207 \\ 402 \end{array} $	214 230 - 435	3 4 4
6 7	207 253	-196 232	23	1 2 26	77	-108	7		6 7	408 383	- 368 - 354	43	0.5) নন	234	- 257	3
8 10 11	$273 \\ 26 \\ 143$	$-266 \\ -21 \\ -112$	1 2 6	20 18 17	$ \begin{array}{r} 85 \\ 142 \\ 123 \end{array} $	$-75 \\ -142 \\ -132$	2 0 2		8 9 10	$713 \\ 389 \\ 52$	- 673 375 - 43	3 2 2	22	$\frac{23}{19}{18}$	$110 \\ 149$	-86 107 -154	1 1
12 13	182 214	-165 216 76	3 0 2	16 15	97 136 143		3 3 4		$11 \\ 12 \\ 13$	65 91 136	-65 -94 -127	$0 \\ 1 \\ 2$		16 14 13	$ \begin{array}{r} 142 \\ 58 \\ 85 \end{array} $	-140 61 97	0 1 3
20 22	91 65	95 66	1	13	175 156	163 153	20		14 18	117 91	-100 80	32		Î2 11	188 110	-185	1 5
24 04 0	29 142	46 133	5 2		$ 136 \\ 182 \\ 123 $	-121 203 -126	3 4 1		20 24	85 65	85 65	0		10 8	$188 \\ 493 \\ 169$	-179 -456 143	1 4 5
124	$207 \\ 117 \\ 120$	-200 112	1	876	694 26 370	$622 \\ -12 \\ 321$	6 4 6	13	1 2 3	247 330 65	268 390 	3 7 3		654	350 551 188	324 539 	3 1 3
5 7	77 194	70 -176	2 3	54	519 136	$-471 \\ -118$	53		4 5	20 156	-20 -173	03		120	299 675	-309 740	1 5
9 11 12	$ 130 \\ 117 \\ 104 $	-150 123 -88	4 1 3	3 2 1	$ \begin{array}{r} 104 \\ 545 \\ 58 \end{array} $	77 586 75	6 4 4		6 7 9	71 162 182	57 162 177	3 0 1		0	$\frac{169}{337}$	165 341	1
13 14	85 97	69 90	3 1	0 1 7 5 5 5	52	-67	4		10 11	117 194	-115 -210	03	2 1	28 24 21	39 91 77	56 75 78	5 3 0
15 18 19	52 71	-117 -72 69	5 0	1 1 25 20 <u>1</u> 7	156 85	-145 41	2 10		13 14	39 39 227	$-\frac{42}{47}$ -233	2		19 18	97 149	87 -119	2 6
$\begin{array}{ccc} 0 & 5 & 1 \\ & 2 \end{array}$	$169 \\ 188$	$-162 \\ 171$	$\frac{1}{3}$	16 15 14	$ \begin{array}{r} 117 \\ 201 \\ 383 \end{array} $	-110 194 -379	1 1 0	14	16 3	85 253	-82 -297	1 6		$\frac{15}{14}$ 13	$97 \\ 123 \\ 130$	85 88 117	3 7 2
34	130 58	133 - 65	12	13 12	149 182	-133 -171	3 2 1		4	182 285	146 314	6 4		12	422 85	- 394	3 2 6
9 7	97	- 90	í	10	292	268	3		9	58	70 54	í		19	104	- 98	ĭ

TABLE 8. (Continued.)

h	k	ı	$F_{o} $	F_{c}	$\omega F_0 - F _c$	h k l	$ F_0 $	Fc	$\omega F_{\rm o} - F_{\rm c} $	h k l	$ F_0 $	F_{c}	$\omega F_{\rm o} - F_{\rm c} $	hkl	$ F_0 $	Fc	$\omega F_{\rm o} - F_{\rm c} $
		816	97 681	$-90 \\ -689$	2 1	4 7	77 91	80 77	$\frac{1}{3}$	87	214 110	194 - 87	3 5	4 5 15 IQ	97 85	-100 62	1 5
		4	71 325	-71 -309	0 2	263	91	27	14	5	156 331	-139 349	3 2	3	85 85	-94 68	2 4
		32	$\frac{259}{292}$	$-260 \\ 280$	0 2	11 13	71 58	66 23	1 9	43	247 65	-239 -61	1	4 4 22	65	-53	3
		$^{1}_{0}$	$285 \\ 364$	$291 \\ 319$	1 5	3 6 T <u>2</u>	71	-74	1	$\frac{2}{1}$	$\frac{441}{227}$	-515 -239	82	$\frac{19}{14}$	117 85	-55	17
2	0	28	58	-62	1	5 1	$\begin{array}{c} 123 \\ 136 \end{array}$	$-25 \\ -59$	$19 \\ 15$	0	221	216	1	$12 \frac{9}{9}$	$ 169 \\ 97 $	$-92 \\ -102$	14 1
		$\frac{22}{20}$	$123 \\ 156$	$129 \\ 173$	$\frac{1}{3}$	35 <u>18</u>	123	106	3	$3 \ 0 \ \frac{28}{26}$	33 71	$-12 \\ -67$	6 1	6 5	117 97	$\begin{array}{r} 88 \\ 100 \end{array}$	6 1
		$\frac{18}{16}$	$292 \\ 270$	$309 \\ 281$	$\frac{2}{1}$	16 5	97 97	$\begin{array}{c} 65\\ 105\end{array}$	7 2	$\frac{24}{22}$	$\begin{array}{c} 85 \\ 201 \end{array}$	$-88 \\ 200$	1 0	43	110^{77}	-120^{69}	2 2
		$\frac{12}{10}$	$168 \\ 336$	$ \begin{array}{r} 169 \\ 351 \end{array} $	0 2	43	$\begin{array}{c} 85 \\ 104 \end{array}$	-77 - 98	2 1	$\frac{20}{18}$	$\begin{array}{c} 168 \\ 247 \end{array}$	$-165 \\ -252$	1 1	$\frac{2}{1}$	$\frac{52}{149}$	-148^{67}	4 0
		86	$\frac{225}{752}$	$-221 \\ -922$	1 13	2 0	$ 104 \\ 97 $	$-124 \\ -91$	4 1	$\frac{16}{14}$	$\begin{array}{c} 247 \\ 136 \end{array}$	252 - 141	1	0	234	242	1
		4 <u>2</u>	130	-67 -143	23	3 4 21	110	88	4	$\frac{12}{10}$	253 39	241 33	2 1	$4 \ 3 \ \frac{24}{23}$	91 65	-61	9 1
		2 4	350 1 23	- 366 131	22	15	$104 \\ 104$	106	1 3	86	$\frac{247}{134}$	$255 \\ 177$	1 8	$\frac{22}{21}$	104 85	98 78	1
		8	$\frac{273}{168}$	-304 179	4 2	$\frac{12}{11}$	91 207	-221	0 2	$\frac{4}{2}$	$ 182 \\ 285 $	$\frac{224}{304}$	7 3	$\frac{17}{16}$	97 39	- 92 55	1 5
		10 12	$194 \\ 298 \\ 100 $	212 308	3	10	97 97	-112	23	02	$207 \\ 395$	-243 - 361	6 4	15 14	$142 \\ 39$	-40	4 0
		14	233	190 252	1 3	87	130 162	132 196	6	46	$\frac{52}{221}$	-239	43	$\frac{13}{12}$	39 156	-147	2
		18	110	121	2	65	123	-138	3	8 12	294 149	-337 152	0	ΠŪ	201 259	-203 -280	0 3
2	1	2	486	-187 -456	3	4 23	52 77	-40 -73	1	16	130 142	-133 140	0	7 6	239 130	$-\frac{238}{123}$	1
		3 4	933 713	- 728	1	10	$130 \\ 104$	-92	3 2	20 24	59 77	$34 \\ 69$	6 2	54	149	-128 - 149	42
		6	253	-224	4	3 3 34	58	6 10	13	311	117	110	1	Ĩ	85 207	- 85 233	4
		10	194	-167	4	20	104	-105	0	3	39	- 36	1	<u>। ব বর</u>	130	120	2 e
		12	511 77	-310	0	15	207	208 _ 91	0	5	26	45	6	24	91 71		2
		15	85 194	83	0	13	91 85	-80	2	7	356	312	5	19	45	-67	6
		20 22	85 136	85 139	0		77 116	-60	42	11	58 240	58	0	15	266	267 	02
2	2 2	1	863	- 342	3	้ จื่	194 85	186 	1 4	14 15	123	$-\frac{122}{108}$	õ	13	227 227	-231	13
		34	85 156	78 - 158	ĩ	76	$117 \\ 142$	-103 141	3	18	91 77	$-\frac{76}{72}$	3 1	11 10	117	-121	1 4
		5	85 136	$-82 \\ -120$	1 3	5 4	370 454	- 367 495	0 4	321	343	288	7	Ĩ	214 201	215 - 197	0 1
		8	278 32	267 40	1 2	32	156 32	156 - 32	ō	3	492 253	$-\frac{451}{255}$	4	7 6	123	-121 -226	03
		$\frac{10}{11}$	402 130	$-380 \\ 111$	2 4	T 0	$\frac{52}{26}$	-43 43	2 5	5	304 227	$\frac{282}{214}$	32	5 4	169 26	-160 26	20
		$12 \\ 13$	$\frac{39}{85}$	$-25 \\ 62$	4 5	3 2 27	58	- 82	6	7 8	434 564	411 536	2 3	32	71 259	72 - 260	0
		$\frac{14}{15}$	$97 \\ 85$	$-78 \\ -77$	4 2	$\frac{26}{22}$	85 65	$ \begin{array}{r} 105 \\ 65 \end{array} $	5 0	9 10	182 32	-177 - 48	1 4	Ī	58 460	58 - 422	0 4
		$\frac{16}{17}$	$123 \\ 91$	-135 78	2 3	$\frac{\overline{21}}{\overline{20}}$	91 91	91 88	0 1	13 14	$97 \\ 168$	89 179	2 2	4 7 28	39	- 58	5
		$\frac{19}{21}$	85 77	$-\frac{92}{60}$	2 4	18 17	$130 \\ 136$	$123 \\ 124$	$\frac{1}{2}$	$15 \\ 16$	110 91	$-105 \\ -89$	1	24 22	85 123	$-88 \\ -109$	1 3
2	2 3	1	143	134	2	16 14	$104 \\ 292$	$-89 \\ -295$	3 0	20	52	-66	3	20 19	58 97	73 - 93	4 1
		2 4	$149 \\ 383$	$-139 \\ 377$	$\frac{2}{1}$	13 11	$\frac{110}{338}$	$-98 \\ 338$	3 0	$\begin{array}{ccc} 3 & 3 & 1 \\ & & 2 \end{array}$	$169 \\ 266$	$-153 \\ -259$	3 1	18 16	$194 \\ 39$	170 - 50	4 3
		5 6	$\frac{77}{130}$	$\begin{array}{r} 68 \\ 128 \end{array}$	2 0	1 <u>0</u>	305 97	$-318 \\ -89$	2 2	3 5	$\begin{array}{c} 85 \\ 182 \end{array}$	$-70 \\ 183$	3 0	15 13	$39 \\ 123$	$-53 \\ -121$	4 0
		8	273 97	$-278 \\ 78$	1 4	87	$ \frac{486}{39} $	$-439 \\ 50$	5 3	6 7	$110 \\ 123$	$103 \\ -126$	1 1	$\frac{12}{11}$	$\frac{422}{85}$	363 89	6 1
		10 11	311 58	328 41	2 4	6 5	$\begin{array}{c} 26\\ 130 \end{array}$	$\begin{array}{r} 23 \\ 130 \end{array}$	$1 \\ 0$	8 9	$\begin{array}{c} 169 \\ 142 \end{array}$	$183 \\ -149$	2 1	10	$65 \\ 259$	$-56 \\ 225$	2 5
		13	$\frac{39}{169}$	-177	3 1	43	110 305	99 300	2	$10 \\ 11$	$136 \\ 305$	$137 \\ 320$	0 2	87	$318 \\ 402$	312 - 355	1 5
		14	85 77	-76 74	2 1	$\frac{2}{1}$	$247 \\ 279$	-248 - 254	03	$12\\13$	71 77	$-71 \\ -78$	0 0	65	$311 \\ 499$	$318 \\ 470$	1 3
		$\frac{21}{24}$	65 39	-14 - 32	13 2	0	117	103	3	14 23	$\begin{array}{c} 162 \\ 32 \end{array}$	$150 \\ -19$	2 4	43	$\frac{26}{32}$	$-38 \\ -32$	4 0
2	24	1	149	150	0	3 1 25 24	58 52	-55	1	343	182	181	0	$\frac{2}{1}$	$376 \\ 169 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$-401 \\ -165$	3 1
		35	-28 58 240	- 50 66	2	220	งษ 77 ๑๑1	60 72	1	6 13	234 97	-261 -75	4 5	0	26	21	2
		6	136	-126	2	18	221 77	226 70	2	351	97	100	1	4 U <u>28</u>	45 65	-53 -53	23
		10 13	111	-12 -58	21 11	16	194 110	191	1	0 4 19	00 97 149	- 60 73 - 195	* 5 3	18	97 272 192	- 93	1 3 3
		15	104	65	8	14	441	430	1	36 8	144 71	- 120	16	12	123	-106 -115 -401	2
2	8 5	$\frac{1}{2}$	97 188	112 - 237	3 8	11	234 299	-218 -251	2	4617	77	6 60	4	8	402 571	-401 675	9
		3	77	-102	6	า้ฐั	104	-103	ŏ	- 3	77	42	8	4	162	153	2

Kennard and Walker:

TABLE 8. (Continued.)

h A	τ 1 2 0 2	F ₀ 765 142 221	F_{c} 785 -102 203	$\begin{array}{c}\omega F_{0}-F_{c} \\2\\8\\3\end{array}$	h k l 19 17 16	$ F_0 $ 201 182 201	F_{c} -203 163 -188	$\begin{array}{c} \omega F_{0} - F_{c} \\ 0 \\ 3 \\ 2 \end{array}$	h k 1	1087	F _o 104 350 194	$F_{c} = -90$ 382 211	$\begin{array}{c}\omega F_{0}-F_{c} \\3\\4\\3\end{array}$	h k 1 7 0 <u>2</u> 1	$ F_0 $ $\vec{6}$ 92 $\vec{0}$ 85 $\vec{6}$ 213	$F_{c} - 89 - 82$ - 82 - 82	$\begin{array}{c} \omega F_{\rm o} - F_{\rm c} \\ 1 \\ 1 \\ 10 \end{array}$
	4 6 8 10	240 279 71 207	-223 318 -86 -224	3 5 4 3	15 14 13 12	58 292 85 123	-305 -56 132	1 2 6 2	6 T 7	5 0 4	97 156 65	- 91 151 48	1 1 4	Î		-148 298 -126 81	8 5 5
	12 14 16 20	$58 \\ 130 \\ 142 \\ 59$	$-52 \\ -134 \\ -177 \\ 58$	2 1 7 0	11 10 9 8	$175 \\ 169 \\ 117 \\ 162$	$152 \\ 144 \\ -103 \\ -153$	4 4 3 2		2086	71 104 110 156	$ \begin{array}{r} 67 \\ -98 \\ -127 \\ 160 \end{array} $	1 1 4 1	1		$139 \\ -287 \\ -215 \\ 108$	2 1 2 2
4 1	l 1 2 3	97 338 247	$-78 \\ 285 \\ 212$	4 7 5	7 5 4 3	240 201 441 65	$231 \\ -176 \\ 422 \\ -65$	1 4 2 0]]]]]	5420	91 142 299 142	85 - 127 - 256 - 139	1 3 6 1	71	1 61 2 234 3 110	76 173 116	4 9 1
	4 5 7 8	441 194 240 65	$391 \\ 158 \\ -212 \\ 59$	5 6 4	2 1 0	$221\\130\\136$	184 89 112	6 8 5		876	123 156 156	-119 140 -127	1 3 5	72	6 156 8 85	-148 86	1 0
	9 12 14	$123 \\ 156 $	118 158 -159	1 0 1	$5 \ 0 \ \frac{26}{24} \\ \frac{27}{22}$	62 77 104	81 79 	5 0 3		5432	201 201 214	-30 175 -134 200	11 4 11 2	73 83 T	1 110 T 136	-116	1
	16 20	110 77	-88 -61	5 4	20 18 16	182 91 305	188 76 376	1 3 9	_	Ĩ	91 110	-100^{-100}	222	Î		-81 142 -48	1 1 3
4 2	2 1 2 3 4	$376 \\ 194 \\ 168 \\ 201 $	$325 \\ 162 \\ -152 \\ 184$	6 5 3 3	14 12 10	$142 \\ 175 \\ 98 \\ 71$	$ \begin{array}{r} 180 \\ -185 \\ -111 \\ 59 \end{array} $	7 2 3 3	602 2 1	2624	66 92 190	58 96 201	2 1 2 2			$-125 \\ 74 \\ 74 \\ 01 \\ 71 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 72 \\ 7$	3 3 2
	5 7 10	$149 \\ 52 \\ 168$	$133 \\ -33 \\ 154$	3 5 2	6 4 2	97 182 337	$93 \\ -200 \\ -377$	1 3 5	İ	086	142 330 261	$ \begin{array}{r} 1200 \\ 143 \\ -392 \\ -249 \end{array} $	0 8 2	$8\overline{2}\overline{2}$	$\frac{3}{9}$ 39 $\frac{3}{9}$ 71	40 	0 1
	11 12 13	$221 \\ 71 \\ 123 \\ 07$	-211 75 -112	2 1 2	0 2 4	266 408 104	$280 \\ 383 \\ -113 \\ 409$	2 3 2		4 2 0	168 350 91	$177 \\ -347 \\ -81 \\ 102$	$1 \\ 0 \\ 2 \\ c$		7777 458 358 58 58	87 -68 -65	2 2 2
4 :	15 15 3 2	91 91	140 60	11 7	8 10 14	570 117 149 91		4 5 9 1	1	2 4 6	233 97 227 142		6 2 1 2	I I		59 29 90 	0 7 0 1
	3 4 5	$142 \\ 194 \\ 58$	$-120 \\ -227 \\ 65$	4 5 2	18 511	117 194	-127 -168	2	1 6 1	6 2	85 77	89 - 64	1 3			$-167 \\ 67 \\ 65$	2 5 6
	9 10	$175 \\ 58 \\ 273$	-61 -318	8 1 6	2 3 5 6	$557 \\ 162 \\ 169 \\ 175 $	495 119 141 155	6 8 5 3	1	4 5 9	182 85 91 130	-176 -78 -73 -120	1 1 4 2			56 80 74 95	2 4 2 3
4	4 1 5 7	$136 \\ 175 \\ 188$	$-146 \\ 176 \\ -186$	2 0 0	7 9 12	$ \begin{array}{r} 221 \\ 117 \\ 156 \end{array} $	-206 111 149	2 1 1	1 6 2	4	149 85		ĩ 1	8 Ī 2	1 110 65 65 2 58		0 1
4 8	52 3	110 91	109 98	0 2	15 18 19	63 77 91	68 78 97	$1 \\ 0 \\ 1$	1	8 1 2	91 110 85	-89 123 -74	0 3 2	2 1 1		91 69 112	0 2 2
4 (5]	63 524	58 97	40 46	5 11	$egin{array}{ccc} 5&2&1\\&&2\\&&3\end{array}$	$123 \\ 104 \\ 214$	$-108 \\ -87 \\ 208$	8 3 1	63	1 2	97 130	$-93 \\ 122$	1 1			-118 95 107	3 3 1 4
	20 15 14	$130 \\ 104 \\ 123$	$ \begin{array}{r} 123 \\ -105 \\ 78 \end{array} $	1 0 9	4 5 6	91 156 110	-79 -149 -106	3 1 1	731	742	52 97 214	$ \begin{array}{r} 69 \\ -89 \\ 225 \end{array} $	4 2 2	1		-102 69 79	2 5 6
	$\frac{12}{11}$ $\frac{12}{10}$	$ \begin{array}{r} 182 \\ 221 \\ 52 \\ 169 \end{array} $	-183 193 -72 176	0 4 5	7 8 10	$130 \\ 240 \\ 85 \\ 126$	-155 -255 69	5 2 3	1	1975	$123 \\ 65 \\ 156 \\ 58 \\ 58 \\ 58 \\ 58 \\ 58 \\ 58 \\ 58 \\ $	$-92 \\ 72 \\ -148 \\ 67$	6 2 1		$5 221 \\ 4 182 \\ 3 247 \\ 1 20$	$-199 \\ -173 \\ 235 \\ 110 \\ -173 \\ -1$	3 1 2
	3876	169 77 221 52	-176 74 212 -46	1 1 1	14 15 5 3 1	136 85 71	-162 98 95	3 6	722	3 10	58 104 97	98 94	1	802	$ \begin{array}{cccc} 1 & 130 \\ 0 & 91 \\ \overline{4} & 82 \\ \end{array} $	-112 60 -74	3 7 2
	543	$194 \\ 221 \\ 156$	$ \begin{array}{r} 177 \\ -214 \\ -141 \end{array} $	3 1 3	4 5 6	52 97 58	$ \begin{array}{r} 78 \\ -138 \\ -69 \end{array} $	7 9 3	1 1 1	431	110 110 91	-99 109 82	2 0 2			61 114 257	
5 8	2 0 5 26	52 71 71	38 54	4 4 6	7 8 10	58 142 65 136	-189 -77 -167	6 9 3 6	1	0987	58 85 104 297	-52 84 -96 -219	2 0 2	1	$ \begin{array}{ccc} 0 & 98 \\ \overline{6} & 101 \\ \overline{4} & 110 \\ \overline{5} & 98 \\ \overline{6} & 98 \\$	$ \begin{array}{r} 141 \\ 120 \\ -122 \\ 99 \end{array} $	9 4 3 2
	20 15 14	$104 \\ 58 \\ 285$	$-123 \\ -63 \\ 306$	4 1 3	6 3 <u>21</u> <u>11</u>	77 227	-66 219	3 1		5 4 1	85 136 149	75 - 140 - 151	2 1 0		0 330 2 240 6 65	385 -277 80	5 7 5 4
	$\frac{13}{12}$ $\frac{11}{10}$	85 85 227	-68 - 75 - 235	4 2 1	10 9 7	$305 \\ 117 \\ 137 \\ 59 \\ 59 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50 \\ 50$	$ \begin{array}{r} 321 \\ -107 \\ -131 \\ 50 \end{array} $	2 2 1	7 I <u>2</u>	0	123 117	116 105	1	1 8 1	6 52 3 91	16 74	9 4
	1087	$253 \\ 156 \\ 142$	280 139 140	4 3 0	5 4 8	123 77 77	111 64 71	2 2 3 2	1	16 15	130 65 91	131 -75 93	0 2 0			-103 -117 76 -77	6 4 5
	543	$\begin{array}{c} 71 \\ 266 \\ 266 \\ 50 \end{array}$	$ \begin{array}{r} 60 \\ 247 \\ -283 \end{array} $	3 3 2	20	177 110	-154 101	4 2	1	3	142 91 58	$133 \\ -88 \\ -58 \\ -58$	2 1 0	1 93 <u>1</u>	1 110 9 39	-5 20	22 5
	$\frac{2}{1}$	$52 \\ 299 \\ 110$	-38 283 -118	4 2 2	6 2 24 19 18 15	71 85 85 182	$-69 \\ 73 \\ -91 \\ -180$	0 3 2 0]	10854	123 162 85 486	-103 159 -78 -433	4 0 2 5	$\frac{1}{1}$	$ \begin{array}{ccc} 58 \\ \overline{4} & 97 \\ \overline{3} & 77 \\ \overline{3} & 77 \\ \end{array} $	12 46 92	12 11 3
5]		91 116 85	$-120 \\ 76 \\ 76$	$5 \\ 1 \\ 2$	14 13 12	91 175 123	84 178 -123	2 0 0		321	85 58 58	-72 51 74	3 2 4	92 <u>1</u> 1	$ \frac{\overline{9}}{6} 71 71 7 104 $	-74 70 98	$\begin{array}{c} 1\\ 0\\ 1\end{array}$

	TABLE 8. (Continued.)																				
h	k	ı	$ F_0 $	F_{c}	$\omega F_{\rm o} - F_{\rm c} $	h	k l	$ F_0 $	F_{c}	$\omega F_{\rm o} - F_{\rm c} $	h	k	ı	$ F_0 $	F_{c}	$\omega F_{\rm o} - F_{\rm c} $	h	k l	$ F_0 $	F_{c}	$\omega F_{\rm o} - F_{\rm c}$
		5	123	-123	0		14	58	-65	2			9	71	-72	0		2	77	103	6
		ŝ	85	76	2		12	123	141	3			8	136	125	2		8	59	48	3
							10	201	-204	1											
9	ī	16	77	-72	1		0	211	220	1	10	ī	5	117	106	2	10	1 3	91	-97	1
		13	136	-121	3		2	110	-112	0			4	117	92	5		4	71	-72	0
		12	85	76	2		12	65	-85	5			3	85	-110	6		6	77	40	9
		9	91	67	5								$\overline{2}$	97	- 46	11		8	52	20	8
		8	156	-147	2	9	1 3	85	79	1			0	77	-56	5					
		7	123	-132	2		5	104	- 90	3							11	0 16	52	46	2
		6	91	65	6		6	85	74	2	10	0	18	58	80	5		14	58	-59	0
		5	91	79	3		7	77	83	1			16	65	-74	2		4	77	72	1
		4	194	182	2								12	117	133	3		2	65	-88	6
		3	130	115	3	10	2 19	20	26	2			10	117	-114	1		0	91	- 98	2
							18	52	-46	2			4	104	90	3		2	77	78	0
9	0	16	117	-122	1								0	201	-214	2					

der Waals radii. The final interatomic distances, together with their standard deviations, are listed in Table 9, where the values obtained at the end of the two-dimensional refinement are also given for comparison. On application of the significance test developed by Cruickshank ¹⁹ differences in the present structure of 0.028 Å in C-Cl, of 0.037 Å in C-C, of 0.033 Å in C-N, of 0.031 Å in C-O, and 0.027 Å in C-S would be at the level of possible significance. Bond angles are recorded in Table 10. The benzene ring was found to be planar within 0.006 Å. The eight-membered amidinium carboxylate ring was planar with an average deviation of 0.04 Å from the mean plane through the eight atoms. The environment about each of the hydrogen-bonded nitrogen atoms was also planar with an average deviation of 0.05 Å from the mean plane of C₈, N₁, O₁, O_{1"} and of 0.04 Å from the mean plane of C₈, N₂, O₂, O_{2"}. The atoms C₈, N₁, N₂, S of the thiouronium cation were coplanar, and the methyl-carbon atom, C₉, lay 0.44 Å above (or below) the plane of the others, the S-C₉ bond being inclined to it at an angle of 14°.

TABLE 9.

Interatomic distances (Å).

	From two- dimensional refinement (with refinement standard devn.)				From two- dimensional refinement	From three-dimensional refinement (with standard devn.)	
Cl-C ₁	 1.61	1.746	(0.011)	S–C	1.64	1.727	(0.012)
C1-C	 1.40	1.330	(0.015)	S–C°	1.66	1.808	(0·014)́
C, _C,	 1.38	1.395	(0.014)	C ₈ -Ň ₁	1.30	1.310	(0.012)
$C_{3} - C_{4}$	 1.40	1.404	(0.013)	$C_8 - N_2 \dots$	1.22	1.338	(0.012)
C ₄ -C ₅	 1.39	1.354	(0.013)	• •			· · ·
$C_{5} - C_{6}$	 1.39	1.397	(0.015)	$O_1 \cdots N_1$	2.92	2.794	(0.010)
$C_{B} - C_{1}$	 1.39	1.401	(0·01 6)	$O_2 \cdots N_2$	2.92	2.771	(0.010)
$C_{A}-C_{7}$	 1.50	1.494	(0.012)	$O_1 \cdots N_n$	2.82	2.790	(0.010)
C,-O,	 1.23	1.257	(0.011)	$O_2 \cdots N_{2'}$	2.89	2.786	(0.010)
$C_{7}^{-}O_{2}^{+}$	 1.29	1.265	(0.011)				. ,

TABLE 10.

Bond angles.

$Cl-C_1-C_2 \dots$	118· 3 5°	$C_{6} - C_{1} - C_{2} \dots$	123·98°	$N_1 - C_8 - N_2 \dots$	119·77°	$C_7 - O_1 \cdot \cdot \cdot N_1 \cdot \ldots$	128·17°
$Cl - C_1 - C_6 \dots$	117.66	$C_{3} - C_{4} - C_{7} \dots$	119.56	$N_1 - C_8 - S_{1} - S_{1}$	124.62	$C_7 - O_2 \cdot \cdot \cdot N_{2'} \dots$	$157 \cdot 15$
$C_1 - C_2 - C_3 \dots$	117.48	$C_{5} - C_{4} - C_{7} \dots$	121.71	$N_2 - C_8 - S \dots$	115.49	$\mathbf{N}_1 \cdot \cdot \cdot \mathbf{O}_1 \cdot \cdot \cdot \mathbf{N}_1$	98·9 3
$C_2 - C_3 - C_4 \dots$	121.37	$C_{4} - C_{7} - O_{1} \dots$	118.62	$C_{8} - S - C_{9} \dots$	100.72	$N_2 \cdot \cdot \cdot O_2 \cdot \cdot \cdot N_{2'}$	83·40
$C_3 - C_4 - C_5 \dots$	118.73	$C_4 - C_7 - O_2 \dots$	117.97	•		$C_8 - N_1 \cdots O_1 , , \dots$	134.05
$C_4 - C_5 - C_6 \dots$	121.44	$O_1 - C_2 - O_2 \dots$	123.39	$C_7 - O_1 \cdots N_1$	118.10	$C_8 - N_2 \cdots O_{2''} \cdots$	120.52
$C_{5} - C_{6} - C_{1} \dots$	116.96			$C_7 - O_2 \cdots N_2$	119.12	$O_1 \cdot \cdot \cdot N_1 \cdot \cdot \cdot O_{1'}$	104.37
•••				$O_1 \cdot \cdot \cdot N_1 - C_8$	119.83	$O_2 \cdot \cdot \cdot N_2 \cdot \cdot \cdot O_{2''}$	119.78
				$O_2 \cdots N_2 - C_8$	118.76		

DISCUSSION

In the crystal structure the two nitrogen atoms sharing the positive charge of each cation are opposed to the two oxygen atoms sharing the negative charge of one anion, each to each, and the strong hydrogen-bonded linkages postulated previously ¹ are confirmed by the relatively short $O_1 \cdots (H)N_1$ and $O_2 \cdots (H)N_2$ bond lengths shown in

¹⁹ Cruickshank, Acta Cryst., 1953, 6, 698.

Table 9. Each S-methylthiouronium group lying parallel to the c crystallographic axis is further linked laterally through comparatively short hydrogen bonds with the oxygen atoms of neighbouring chlorobenzoate anions in the manner predicted.¹ Each of these is in turn linked to two other S-methylthiouronium cations, one opposed and the other lateral, to form a system of $O \cdots (H)N$ hydrogen bonds extending in an infinite spiral about the screw axes parallel to b. Between these sheets consisting of firmly bonded ions the only cohesive forces are relatively weak van der Waals ones, as already indicated by the cleavage properties of the crystals. Plate 1 illustrates the structure viewed along the b-axis and shows the clockwise and anticlockwise disposition of spirals of O · · · (H)N hydrogen bonds; Plates 2 and 3 show a model of the structure viewed along the c- and the *a*-axis, respectively. This type of structure is probably characteristic of the whole class of N-unsubstituted amidinium carboxylates.

Abrahams 60 gives a value of 1.82 Å as the length of a pure C-S single bond, and the $S-C_9$ bond length (1.808 Å) found in the present determination is in good agreement. The S-C₈ bond, however, is significantly shorter (1.727 Å), being slightly larger than the lengths quoted for the C-S bond in ethylenethiourea 20 and in thiourea, 21 and indicates, on the basis of Abrahams's curve,⁶⁶ an approximately 50% double-bond character. Similar observations have recently been recorded for S-methylthiouronium sulphate.²² Of

greater interest perhaps is the difference of about 9° between the two N-C-S bond angles in the crystal structure of Smethylthiouronium ϕ -chlorobenzoate. Precisely similar observations have been made on S-methylthiouronium sulphate²²

and on dithiodiformamidinium di-iodide ²³ (IV; X = I), but to a less marked extent (3°) with dithiodiformamidinium dibromide ²³ (IV; X = Br). In each case the larger angle is the one to which the remote substituent on the sulphur atom stands in a syn-relationship, and, in the present instance, inspection of a model and of a planar diagram drawn by using Pauling's van der Waals radii suggest that the distortion is due to the closeness of approach of the methyl group to the (N_1-) hydrogen-bonded oxygen atom (O_1) of a neighbouring anion.

In view of the overall accuracy of the structure refinement we were surprised to note the irregular bond lengths in the benzene ring, and, in particular, the short C_1 - C_2 interatomic distance. The test of omitting the planes with maximum disagreement described above suggested that this apparent shortening was not related to any overt experimental errors. This kind of observation has been made previously, for example, with benzoic acid ²⁴ and dibenzyl hydrogen phosphate,²⁵ where the variations were rather less than those we have observed, and with the di-p-bromobenzoyl ester of iresin,²⁶ in which the variations are the largest we have traced. Although bond-length variations in simple benzene derivatives have been considered theoretically,²⁷ no satisfactory reason for them is yet available. In searching for an explanation of this effect we have made a survey of recorded C-C interatomic distances in compounds containing a mono- or 1,4-di-substituted benzene ring and a correlation with various structural features was attempted. Fig. 5 illustrates the observed scatter of C-C bond lengths in the form of histograms, and the results are analysed statistically in Table 11, which shows the probabilities of the observed variance ratios between different groups. It was found that substances containing heavy atoms showed a wider scatter of the C-C bond lengths in the benzene rings than did those with light atoms only, even when accurate three-dimensional analyses in the first group

- Kunchur and Truter, J., 1958, 2551.
 Stam, Acta Cryst., 1962, 15, 317.
 Foss, Johnsen, and Tvedten, Acta Chem. Scand., 1958, 12, 1782.
- ²⁴ Sim, Robertson, and Goodwin, Acta Cryst., 1955, 8, 157.
- ²⁵ Dunitz and Rollett, Acta Cryst., 1956, 9, 327.
- ²⁶ Rossmann and Lipscomb, Tetrahedron, 1958, 4, 275.
- 27 Cf. Trotter. Tetrahedron, 1960, 8, 13.

²⁰ Wheatley, Acta Cryst., 1953, 6, 369.

PLATE 1. Partly perspective drawing of skeleton model giving view along *b*-axis, and showing clockwise and anticlockwise disposition of spirals of $O \cdots HN$ hydrogen bonds.

The 00l cleavage plane passes through the clear space.

PLATE 2. Photograph of skeleton model showing view along *c*-axis.

PLATE 3. Photograph of skeleton model showing view along a-axis.

were compared with less accurate two-dimensional analyses in the second group. An even more striking, and statistically highly significant, correlation was found when substances containing only atoms with isotropic thermal movement were compared with substances

FIG. 5. Variation of recorded carbon-carbon bond lengths in mono- and 1,4-disubstituted benzene rings.

(a) In molecules in which all atoms vibrate isotropically (mean, 1.384 Å; variance, 0.000275).
 (b) In molecules in which certain atoms vibrate anisotropically (mean, 1.383 Å; variance, 0.001448).

containing one or more atoms executing marked anisotropic vibration, and the correlation was independent of the accuracy of the structure determination. In substances showing a scatter of C-C bond-length values there was also a tendency for the bond corresponding to our C_1 - C_2 bond to be the shortest. We are unable to offer a theoretical explanation

TABLE 11.

Statistical analysis of variation in length of carbon-carbon bonds in mono- and 1,4-di-substituted benzene rings.

		Mean ring				Probability
Thermal movement	No. of	С-С				of variance
[atom(s) present]	ob sns .	bond l ength	V ar ianc e	Variance ra	atio	ratio
(1) Isotropic **	24	1· 3 82	0·000241	(1) and (3)	1 ·17	> 0.50
(2) Anisotropic **	36	1· 3 86	0·001963	(2) and (4)	1.83	0.010.02
(3) Isotropic •	63	1· 3 85	0·000282	(1) and (2)	8.12	<0.001
(4) Anisotropic •	51	1. 3 81	0.001075	(3) and (4)	3.81	<0.001
(1 and 3) All isotropic	87	1· 3 8 4	0.000275	(land 3) and	5.27	<0.001
(2 and 4) All anisotropic	87	1· 38 3	0·001 448	(2 and 4)		
(5) Isotropic [light atoms only]	54	1.384	0.000254	(5) and (7)	$1 \cdot 42$	0.02-0.10
(6) Anisotropic [light atoms only]	18	1.382	0.000461	(6) and (8)	3.72	0·0010·01
(7) Isotropic [heavy atom(s)]	33	1.389	0.000361	(5) and (6)	1.81	0.02
(8) Anisotropic [heavy atom(s)]	69	1.383	0.001714	(7) and (8)	4.75	<0.001
(9) Anisotropic •• [heavy atom(s)]	3 0	1· 3 84	0·002290)	(0) and (10)	1.90	0.01 0.05
(10) Anisotropic • [heavy atom(s)]	39	1.382	0·001269 J	(b) and (10)	1.90	0.01-0.02

The grading signs (* and *) have the significance defined in "Tables of Interatomic Distances and Configurations in Molecules and Ions," Special Publ. No. 11, The Chemical Society, London, 1958 (pp. 14, 27), from which, together with the following supplementary sources, the data were obtained: present work; Webster, J., 1956, 2841; Rossmann and Lipscomb, *Tetrahedron*, 1958, 4, 275; Dunitz and Rollett, *Acta Cryst.*, 1956, 9, 327; Penfold and White, *ibid.*, 1959, 12, 130; Frasson, Garbuglio, and Bezzi, *ibid.*, p. 126; Houstry and Clastre, *ibid.*, 1957, 10, 695. of this effect but we should like to point out the close correlation between variations in the C-C bond lengths and the presence, especially, of a heavy atom as a *para*-substituent vibrating preferentially at right angles to the bond linking it with the benzene ring. It is very probable that this effect, which may be a simple mechanical resonance one, does not extend beyond the immediate environment of the atom showing anisotropic vibration and that reasonable deductions can be based on the remaining interatomic distance values.

FIG. 6. Distribution of m. p.s of 632 representative amides.

■ 188 Amides of acyclic carboxylic acids (Beilstein's "Handbuch der organischen Chemie," 4te Aufl., Springer, Berlin, 1920, Bd. II).

III8 Amides of acyclic hydroxy- and oxo-carboxylic acids (*op. cit.*, 1921, Bd. III). 326 Amides of carbocyclic carboxylic acids (*op. cit.*, 1926, Bd. IX).

Monoamides derived from polybasic acids, other than those containing a free carboxyl group, are included.

The amidinium carboxylate doublet ion-pair (III) is formally reminiscent of the dimers (V) formed by carboxylic acids, but the latter, of course, lack hydrogen atoms available for lateral hydrogen bonding. It might be thought, however, that amides would show some resemblances in crystalline behaviour to the amidinium carboxylates, as, like the latter (III), the dimers (VI) that amides can form have two hydrogen atoms available for lateral bonding. A survey (Fig. 6) of the melting points of 632 representative amides shows no narrow spread of melting point such as that found (Table 1 and Fig. 1) for the S-arylmethylthiouronium salts of carboxylic acids, and suggests more latitude in the modes of crystallisation adopted by amides. Benzamide,²⁸ for example, forms dimers (VI; R = Ph) that subsequently form endless chains (VII), recalling the behaviour of dioxopiperazine,²⁹ but with nicotinamide³⁰ the ring-nitrogen atom participates in the hydrogen-bonding arrangements to give a two-dimensional network; acetamide shows still another arrangement³¹ with continuous hydrogen-bonded chains forming loops of six molecules. The formation of chains has also been observed with carboxylic acids, for example, in formic acid,³² in the α -form of oxalic acid,³³ and in nicotinic acid,³⁴ which forms chains of molecules linked by N..... HO bonds between the carboxyl group of one molecule and the nitrogen atom of the next. With the amidinium carboxylates, however. the presence of the specific ionic charges is responsible, we believe, for the formation of

- ²⁹ Corey, J. Amer. Chem. Soc., 1938, 60, 1598.
- ³⁰ Wright and King, Acta Cryst., 1954, 7, 283.
- ³¹ Senti and Harker, J. Amer. Chem. Soc., 1940, **62**, 2008.
- ³² Holtzberg, Post, and Fankuchen, Acta Cryst., 1953, **6**, 127; in contrast, formamide associates in coplanar cyclic dimers (Ladell and Post, *ibid.*, 1954, **7**, 559).
 - ³³ Hendricks, Z. Krist., 1935, 91, 48; Cox, Dougill, and Jeffrey, J., 1952, 4854.
 - ⁸⁴ Wright and King, Acta Cryst., 1953, 6, 305.

²⁸ Penfold and White, Acta Cryst., 1959, 12, 130.

doublet ion-pairs (III) *in solution*, and their preliminary formation limits their subsequent aggregation into crystals to a uniform pattern.

The amidinium carboxylate structure (III) is found ³⁵ in the crystal structure of creatine monohydrate, ${}^{\Theta}O_{2}C \cdot CH_{2} \cdot NMe \cdot C(\cdot NH_{2}) \cdot NH_{2}, H_{2}O$, but in this case the doublet ion-pairs form endless rows of end-to-end creatine molecules that are hydrogen-bonded laterally in layers held together by hydrogen-bonding involving the water of crystallisation between alternate rows. The structure (III) is almost certainly involved in the double salts formed between guanidines and amino-acids, such as N-ethylglycine-guanidinium bromide (VIII) and the N-ethylglycocyamine-N-ethylglycine complex (IX) described by Armstrong.³⁶ The present work and the above observations indicate a more precise picture of the probable mode of participation of the guanidino-group of arginine in the tertiary structures of proteins than has hitherto been available. In fact, the role of the guanidino-group of arginine in the tertiary structure of proteins has been grossly underestimated, and, at times, even overlooked; ³⁷ at best, it has been regarded merely as a basic group and considered in terms similar to those applied to the ε -amino-group of lysine. The guanidino-group of arginine $(pK_a \ 12.5)$ is, however, the strongest cationic group found in proteins and must attract to itself suitably situated and orientated anionic groups. Barring small extraneous anions, these could, in the native protein, be the ionised carboxyl-terminal end of the peptide chain or, more probably, the distal ionised carboxyl groups of aspartic or glutamic acid residues in the peptide chain. The more exacting stereochemical requirements of the amidinium carboxylate structure (III), when applied to the guanidino-group of arginine in proteins, introduce constraints that are absent in the case of the ε -amino-group of lysine, and an amidinium carboxylate bridge formed between two well-separated arginine and glutamic, or aspartic, acid residues in a peptide chain will therefore confer a considerable degree of rigidity on the native protein, apart from the opportunity of further stabilisation resulting from cross-bracing of the bridge by lateral hydrogen bonding. It is to be expected ³⁸ that the amino-acid side-chains will project from the main peptide chain in the fully staggered and extended all-trans-conformation,* and an amidinium carboxylate bridge (X) formed between the arginine-guanidino-group

³⁸ Kendrew, Watson, Strandberg, Dickerson, Phillips, and Shore, Nature, 1961, **190**, 666.

^{*} In the crystal structure of one form of free L-glutamic acid, however, there appears to be a gaucheconformation at the $\beta\gamma$ -position (Hirokawa, *Acta Cryst.*, 1955, **8**, 637). A second form, probably the all-*trans*-one, has not yet been investigated.

³⁵ Mendel and Hodgkin, Acta Cryst., 1954, 7, 443.

³⁶ Armstrong, J. Org. Chem., 1956, 21, 503.

³⁷ Cf., e.g., Linderstrøm-Lang and Schellman, in Boyer, Lardy, and Myrback's "The Enzymes," 2nd edn., Academic Press, Inc., New York, 1959, Vol. I, p. 451; Scheraga, "Protein Structure," Academic Press, Inc., New York, 1961.

and the γ -carboxyl group of a glutamic acid residue, having its two ends pointing away from each other, could link two α -positions in the peptide chain separated by about 13.5— 14.0 Å and having appropriately directed $\alpha\beta$ -bonds; similarly, participation of aspartic acid would give a bridge that could link two a-carbon atoms in the peptide chain separated in space by up to 12.5 Å, again if we assume suitably directed $\alpha\beta$ -bonds. A perfect example of a bridge of this nature is to be seen in a detailed three-dimensional structure proposed by Kendrew³⁹ for sperm-whale myoglobin, where the participating residues are arginine (" CD-3 ") and glutamic acid (" E-10 "); Kendrew's structure is of further interest to us here as the lateral amidinium carboxylate hydrogen atoms are shown employed in hydrogen-bonding with the β -carboxyl group of an aspartic acid residue (" E-3 ") and the carboxyl group of one of the 2-carboxyethyl side-chains of the hæm moiety, respectively, after the fashion we have emphasised for the pattern of crystallisation of amidinium salts of carboxylic acids. Thus, in addition to the fact of its own presence, the amidinium carboxylate bridge (X) in myoglobin is cross-braced laterally to two other parts of the chromoprotein to give a powerful coalition of forces for the maintenance of the protein in its native conformation. Moreover, the hydrogen-bonding to the hæm carboxyl group may have in myoglobin the further reciprocal purpose of stabilising the molecule for its respiratory function, since, in the case of hæmoglobin, artificial hæmoglobins prepared from hæms lacking free carboxyl groups, and therefore hydrogen-bonding capabilities, are relatively unstable.40

That native egg albumin may be stabilised by the presence of an amidinium carboxylate bridge is suggested by the fact that it can be titrated between pH 2.5 and 12.0 without denaturation, indicating that the basic group involved has pK_a greater than 12, thus excluding α - and ε -amino-groups and imidazole groups,⁴¹ and rupture of an amidinium carboxylate bridge could, in this case, be the event leading to denaturation. We believe that the amidinium carboxylate bridge may play a major role in maintaining the conformations of native proteins, and in a much more efficient manner than any other form of tertiary structure; thus, in addition to the existence of the bridge itself, its cross-bracing by lateral hydrogen-bond formation, as it appears to be present in myoglobin, may be a regular feature in maintaining the relative positions of separate helical regions of the peptide chain in globular proteins, and account, for example, for the compact and sparingly hydrated nature of the lysozyme molecule.⁴² Amidinium carboxylate formation between discrete protein molecules could also account for association phenomena. The efficiency

³⁹ Kendrew, Scientific American, 1961, 205, No. 6, 96.

40 O'Hagan, Biochem. J., 1960, 74, 417; Harrap, Gratzer, and Doty, Ann. Rev. Biochem., 1961, 30, **269**.

⁴¹ Neuberger, J. Sci. Food Agric., 1950, 80.
 ⁴² Tanford and Wagner, J. Amer. Chem. Soc., 1954, 76, 3331.

of guanidine as a denaturing agent is, however, not necessarily related to any interaction with amidinium carboxylate bridges, as it is likely to interact even more readily with more accessible carboxyl groups involved in other forms of hydrogen-bonding in the tertiary structure of the protein. The amidinium carboxylate structure (III), moreover, probably possesses considerable thermal stability in solution in dissociating solvents, as suggested by the fact that the free amidinohydrazone (XI) of pyruvic acid has been found to be trimeric by the ebullioscopic method in glacial acetic acid.⁴³ This trimer was formulated by Wedekind and Bronstein ⁴³ as the cyclic structure (XII), but a more acceptable cyclic structure results from rotation of the carboxylate and guanidinium groups in the monomer (XI) out of the plane of the paper in the directions shown through about 50° and 80°, respectively, and formation of a large ring containing three amidinium carboxylate (III) groups.

We have previously suggested ¹ that amidinium carboxylate formation may underlie the diverse pharmacological and chemotherapeutic activities of amidines, guanidines, and isothioureas; these properties appear to be those of the amidinium cations,⁴⁴ which are presumably held ionically to cellular anionic groups by mechanisms such as those we have discussed above. It is also probable that the stereochemical consequences of amidinium carboxylate formation explain why replacement of the amidino-group by the amino-group in otherwise comparable structures may give substances with little or none of the biological activity of the amidines, although, on occasion, such substitution may give practically unimpaired biological activity.⁴⁵

The authors are grateful to Dr. D. W. J. Cruickshank and Miss Diana Pilling for their invaluable help with the three-dimensional calculations, and to Dr. R. Sparks for the use of his programmes on molecular-geometry calculations which were carried out at the University of London Computing Centre through the courtesy of the Director, Dr. R. A. Buckingham. They are also indebted to Miss M. V. Mussett for statistical help, and to Mrs. L. Seward and Mr. C. F. Doré for technical assistance.

Appendix

The data analysed in Table 1 and Fig. 1 were obtained from the sources cited previously 1 and from the following supplementary sources:

Akiya and Suzuki, J. Pharm. Soc. Japan, 1954, 74, 1296; Ali and Owen, J., 1958, 2111; Ansell and Brown, J., 1958, 2955, 3956; Arata, Yakugaku Zasshi, 1957, 77, 225; Arata, Koseki, and Sakai, *ibid.*, p. 232; Arata and Ohashi, *ibid.*, p. 229; Arata, Suzuki, and Yasuda, *ibid.*, p. 790; Arcus and Bennett, J., 1955, 2627; Arens and van Dorp, Rec. Trav. chim., 1947, 66, 759; Arens, Volger, Doornbos, Bonnema, Greidanus, and van den Hende, *ibid.*, 1956, 75, 1459; Arigoni, Viterbo, Dünnenberger, Jeger, and Ruzicka, Helv. Chim. Acta, 1954, 37, 2306; Asinger, Thiel, Sedlak, Hampel, and Sowada, Annalen, 1958, 615, 84; Atherton, Bergel, Cohen, Heath-Brown, and Rees, Chem. and Ind., 1953, 1151.

Ruzicka, Helv. Chim. Acta, 1954, 37, 2306; Asinger, Thiel, Sedlak, Hampel, and Sowada, Annalen, 1958, 615, 84; Atherton, Bergel, Cohen, Heath-Brown, and Rees, Chem. and Ind., 1953, 1151.
Bachstez, Ciencia, 1948, 9, 121; Badger, Rodda, and Sasse, Chem. and Ind., 1954, 308; J., 1954, 4162; Baer and Stedman, Canad. J. Biochem. Physiol., 1959, 37, 583; Ballinger and de la Mare, J., 1957, 1481; Barlow, Stacey, and Tatlow, J., 1955, 1749; Barnhart, Seffl, Wade, West, and Zollinger, Chem. and Eng. Data Ser., 1957, 2(i), 80; Bartlett and Stiles, J. Amer. Chem. Soc., 1955, 77, 2806; Barton, Defiorin, and Edwards, J., 1956, 530; Batt and Slater, J., 1949, 838; Berger, Acta Chem. Scand., 1954, 8, 427; Bergmann and Klein, J. Org. Chem., 1958, 23, 512; Birkofer and Hartwig, Chem. Sec., 1958, 80, 5488; Bost and Winstead, ibid., 1952, 74, 1821; Brändström and Forsblad, Arkiv Kemi, 1953, 6, 351; 1954, 6, 561; Brettle and Polgar, J., 1956, 1620; 1959, 664; Briggs and Cain, Tetrahedron, 1959, 6, 143; Brockman, Stokstad, Patterson, Pierce, and Macchi, J. Amer. Chem. Soc., 1954, 4523; Büchi, Jeger, and Ruzicka, Helv. Chim. Acta, 1948, 31, 241; Buess, Yiannios, and Fitzgerald, J. Org. Chem., 1957, 22, 197; Bullock, Brockman, Patterson, Pierce, and Stokstad, J. Amer. Chem. Soc., 1954, 4523; Büchi, Jeger, and Ruzicka, Helv. Chim. Acta, 1948, 31, 241; Buess, Yiannios, and Fitzgerald, J. Org. Chem., 1957, 22, 197; Bullock, Brockman, Patterson, Pierce, and Stokstad, J. Amer. Chem. Soc., 1952, 74, 1869, 3455; Bullock, Brockman, Patterson, Pierce, von Saltza, Sanders, and Stokstad, ibid., 1954, 76, 1828; Bullock, Hand, and Stokstad, ibid., 1957, 79, 1975; Burke and Herbst, J. Org. Chem., 1955, 20, 726.

Caliezi and Schinz, Helv. Chim. Acta, 1949, 32, 2556; 1950, 33, 1129; Campbell, Carter, and Slater, J., 1948, 1741; Canonica, Fiecchi, and Valcavi, Atti Accad. naz. Lincei, Rend. Classe Sci. fis. mat. nat.,

43 Wedekind and Bronstein, Annalen, 1899, 307, 298.

44 Cf. Fastier, Pharmacol. Rev., 1962, 14, 37.

45 Evans, Fuller, and Walker, Lancet, 1944, II, 523; 1945, II, 336.

1957, 18, 520; Canonica and Martinoli, Gazzetta, 1953, 83, 431; Canonica and Pelizzoni, ibid., 1954, 84, 553; Carlsson, Erdtman, Frank, and Harvey, Acta Chem. Scand., 1952, 6, 690; Castelfranchi and Perrotti, Ann. Chim. (Italy), 1957, 47, 1201; Charlish, Davies, and Rose, J., 1948, 227; Clark, J., 1950, 3397; Clemo and Davison, J., 1951, 447; Cocker, McMurry, Mabrouk, and Williamson, J., 1958, 2899; Collin-Asselineau, Lederer, Mercier, and Polonsky, Bull. Soc. chim. France, 1950, 720; Colombi, Bosshard, Schinz, and Seidel, Helv. Chim. Acta, 1951, 34, 265; Colonge and Domenech, Bull. Soc. chim. France, 1952, 634; Colonge and Grimaud, Compt. rend., 1950, 231, 580; Bull. Soc. chim. France, 1951, 439; Colonge and Weinstein, ibid., p. 820; Cookson and Mann, J., 1949, 67, 71; Corey and Sauers, J. Amer. Chem. Soc., 1959, 81, 1743; Corey, Sauers, and Swann, ibid., 1957, 79, 5826; Cornforth, Cornforth, Popják, and Gore, Biochem. J., 1958, 69, 146; Corsano and Capito, Gazzetta, 1955, 85, 1590; Crombie, J., 1955, 2997; 1955, 999, 1007; Crombie and Harper, J., 1950, 2685; Crombie and Jacklin, J., 1957, 479; Cronyn, J. Amer. Chem. Soc., 1952, 74, 1225; Crowley, Millin, and Polgar, J., 1957, 2931; Cuingnet, Bull. Soc. chim. France, 1955, 221; Daesslé, Favre, and Schinz, Helv. Chim. Acta, 1957, 40, 2278; Daesslé and Schinz, ibid., 1956, 39, 2118; Dahn and Lawendel, ibid., 1954, 37, 1318; Dalal, Trivedi, and Patel, J. Indian Chem. Soc., 1958, 35, 742, 745; Dean, Steelink, and Tetaz, J., 1958, 3386; De Maldè, Minisci, Pallini, Volterra, and Quilico, Chimica e Industria, 1956, 38, 371; Desai, Sattur, Kulkarni, and Nargund, J. 1958, 1994; Dobson and Raphael, J., 1955, 3558; Doering and Hoffmann, J. Amer. Chem. Soc., 1954, 76, 1902; Dziewiatkowski and Norman, J., 1958, 4605; Dreiding and Pratt, J. Amer. Chem. Soc., 1954, 76, 1902; Dziewiatkowski and Lewis, J. Biol. Chem., 1945, 378, 79.

Eisner, Elvidge, and Linstead, J., 1953, 1372; English and Dayan, J. Amer. Chem. Soc., 1950, 72, 4187; Ernest and Pitha, Chem. Listy, 1957, 51, 543; Eschenmoser and Frey, Helv. Chim. Acta, 1952, 35, 1660; Evans, Godsell, Stephens, Tatlow, and Wiseman, Tetrahedron, 1958, 2, 183; Evans and Tatlow, J., 1954, 3779; 1955, 1184; Fawcett and Harris, Chem. and Ind., 1953, 18; J., 1954, 2669; Fétizon, Fritel, and Baranger, Compt. rend., 1953, 237, 1722; Fétizon and Julia, *ibid.*, 1952, 235, 1654; Ficken, Johns, and Linstead, J., 1956, 2280; Fischer and Jeger, Helv. Chim. Acta, 1951, 34, 1084; Franzen, Chem. Ber., 1954, 87, 1219; Fray and Polgar, J., 1956, 2036; Freudenberg and Müller, Annalen, 1953, 584, 40; Friediger and Pedersen, Acta Chem. Scand., 1955, 9, 1425.

Gates and Malchick, J. Amer. Chem. Soc., 1957, 79, 5546; Genge and Trivedi, J. Indian Chem. Soc., 1957, 34, 804; Godsell, Stacey, and Tatlow, Tetrahedron, 1958, 2, 193; Granger, Corbier, Vinas, and Nau, Compt. rend., 1957, 244, 1376; Bull. Soc. chim. France, 1957, 815; Grigor, MacInnes, McLean, and Hogg, J., 1955, 1069; Grob, Kny, and Gagneux, Helv. Chim. Acta, 1957, 40, 130; Grob and Rumpf, ibid., 1954, 37, 1479; Gruber, Chem. Ber., 1955, 88, 178; Gunsalus, Barton, and Gruber, J. Amer. Chem. Soc., 1956, 78, 1763; Gutman and Hickinbottom, J., 1951, 3344; Gutsche, J. Amer. Chem. Soc., 1948, 70, 4150; Gutsche and Fleming, ibid., 1954, 76, 1771; Gutsche and Seligman, ibid., 1953, 75, 2579; Gutsche, Wendt, and Seligman, ibid., 1958, 80, 3711.

Hall and Polgar, Chem. and Ind., 1954, 1293; Halpern and Schmid, Helv. Chim. Acta, 1958, 41, 1109; Hardegger, Kreis, and El Khadem, ibid., 1952, 35, 618; Harrison, May, and Imperial Chemical Industries, B.P. 639,491; Harukawa, J. Pharm. Soc. Japan, 1953, 73, 449; 1955, 75, 525; Haworth and Hobson, J., 1951, 561; Heilbron, Jones, Julia, and Weedon, J., 1949, 1823; Heilbron, Jones, and Sondheimer, J., 1947, 1586; 1949, 604; Helg, Zobrist, Lauchenauer, Brack, Caliezi, Stauffacher, Zweifel, and Schinz, Helv. Chim. Acta, 1956, 39, 1269; Hitomi, Ann. Report Takeda Res. Lab., 1951, 10, 10; Hofmann, Jucker, Miller, Young, and Tausig, J. Amer. Chem. Soc., 1954, 76, 1799; Holland and Mamalis, J., 1958, 4588, 4588, 4601; Holland and Nayler, J., 1952, 3403; Hurd and Mori, J. Amer. Chem. Soc., 1955, 77, 5359.

Inoue, J. Pharm. Soc. Japan, 1952, 72, 731; Iwakiri, Nippon Kagaku Zasshi, 1957, 78, 1460; Jocelyn and Polgar, J., 1953, 132; Julia, Baillargé, and Tchernoff, Bull. Soc. chim. France, 1956, 776; Julia and Surzur, ibid., p. 1620; Julia and Tchernoff, ibid., 1954, 470; Jureček and Večeřa, Chem. Listy, 1953, 47, 274; Coll. Czech. Chem. Comm., 1954, 19, 77; Juslén and Enkvist, Acta Chem. Scand., 1958, 12, 511. Kantro and Gunning, J. Amer. Chem. Soc., 1951, 73, 480; Kappeler, Eschenmoser, and Schinz, Helv.

Kantro and Gunning, J. Amer. Chem. Soc., 1951, 73, 480; Kappeler, Eschenmoser, and Schinz, Helv. Chim. Acta, 1953, 36, 1877; Kenyon and Ross, J., 1951, 3407; Kenyon and Symons, J., 1953, 2129; Keskin, Rev. Fac. Sci. Istanbul, 1950, 15a, No. 1, 54; Kimura and Tanaka, Chem. Pharm. Bull. (Japan), 1958, 6, 9; King, Clark-Lewis, and Wade, J., 1957, 886; King, Clark-Lewis, Wade, and Swindin, J., 1957, 873; King and Grundon, J., 1950, 3547; King and Neill, J., 1952, 4752; Klein and Bergmann, J. Org. Chem., 1957, 22, 1019; Kochetkov, Kudryashov, and Aleeva, Zhur. obshchei Khim., 1957, 27, 2166; Kubba, Vig, and Mukherji, Current Sci., 1954, 23, 158; Kudryashov and Kochetkov, Zhur. obshchei Khim., 1958, 28, 2448; Kuhn and Schinz, Helv. Chim. Acta, 1953, 36, 161; Kulkarni, Sattur, and Nargund, J. Karnatak Univ., 1957, 2, 69; Kursanov and Vitt, Doklady Akad. Nauk S.S.S.R., 1957, 113, 1066; Kyburz, Riniker, Schenk, Heusser, and Jeger, Helv. Chim. Acta, 1953, 36, 1891.

113, 1066; Kyburz, Riniker, Schenk, Heusser, and Jeger, Helv. Chim. Acta, 1953, 36, 1891.
 Lane, Tetrahedron, 1959, 5, 95; Leaper and Bishop, Research Correspondence, 1954, 7, S59; Leese and Raphael, J., 1950, 2725; Lespagnol and Cuingnet, Bull. Soc. pharm. Lille, 1955, No. 1, 50; Letsinger, J. Amer. Chem. Soc., 1950, 72, 4842; Levas and Levas, Compt. rend., 1958, 247, 2148; Lewis and Polgar, J., 1958, 102; Lindgren and Mikawa, Acta Chem. Scand., 1954, 8, 954; Lucus, Angew. Chem., 1956, 68, 247; Arch. Pharm., 1958, 291, 57; Lukeš and Plešek, Coll. Czech. Chem. Comm., 1955, 20, 1253.

(68, 247; Arch. Pharm., 1958, 291, 57; Lukes and Plesek, Coll. Czech. Chem. Comm., 1955, 20, 1253. Mackie and Cutler, J., 1954, 2577; Mackie and Misra, J., 1954, 4430; Maheshwary, Vig, and Mukherji, Current Sci., 1953, 22, 147; Mahishi, Sattur, and Nargund, J. Karnatak Univ., 1957, 2, 50; Mann and Wilkinson, J., 1957, 3336; Marc, Sylvestre, and Bémont, Compt. rend., 1957, 245, 2304; Marvel and Moyer, J. Org. Chem., 1957, 22, 1065; Matsuno, J. Pharm. Soc. Japan, 1956, 76, 1136; McEntee and Pinder, J., 1957, 4419; McKern and Spies, J. Proc. Roy. Soc. New South Wales, 1953, 87, 24; Meek, Lorenzi, and Cristol, J. Amer. Chem. Soc., 1949, 71, 1830; Meek and Trapp, ibid., 1952, 74, 2686; Micheel, Klemer, and Baum, Chem. Ber., 1955, 88, 475; Momose and Tanaka, Pharm. Bull. (Japan), 1954, 2, 152; Mondon, Annalen, 1952, 577, 181; Chem. Ber., 1956, 89, 2750; Morita and Miles, Analyt. Chem., 1956, 28, 1081; Mousseron and Mousseron-Canet, Compt. rend., 1954, 239, 427: Bull. Soc. chim. France, 1956, 1220; Mousseron, Mousseron-Canet, and Boch, Compt. rend., 1958, 247, 2073; Mousseron and Winternitz, *ibid.*, 1949, 228, 2035; Mousseron, Winternitz, and Balmossière, *ibid.*, 1956, 243, 1328; Mousseron, Winternitz, and Ronzier, *ibid.*, 1952, 235, 660; 1953, 237, 1529; Mukherji, Vig, and Maheshwary, J. Indian Chem. Soc., 1957, 34, 9; Mukherji, Vig, Maheshwary, and

Sandhu, ibid., p. 1; Mukherji, Vig, Singh, and Bhattacharyya, J. Org. Chem., 1953, 18, 1499. Nakano and Sano, J. Pharm. Soc. Japan, 1956, 76, 943; Naves, Helv. Chim. Acta, 1949, 32, 1798; Naves and Ardizio, Bull. Soc. chim. France, 1951, 374; Nesmeyanov and Reutov, Doklady Akad. Nauk S.S.S.R., 1957, 115, 518; Newman and Owen, J., 1952, 4713, 4722; Nield. Stephens, and Tatlow, J., 1959, 159; Nineham and Raphael, J., 1949, 118; Noyce and Denney, J. Amer. Chem. Soc., 1952, 74, 5912; 1954, 76, 768; Novák and Protiva, Chem. Listy, 1956, 50, 1995; Ogawa and Ito, J. Agric. Chem. Soc. Japan, 1952, 28, 432; Ohloff, Annalen, 1957, 606, 100; Oroshnik, Karmas, and Mebane, J. Amer. Chem. Soc., 1952, 74, 295.

Pallares and Garza, Arch. Biochem., 1949, 21, 377; Pettersson and Wildeck, Arkiv Kemi, 1956, 9, 33; Plattner, Fürst, Müller, and Somerville, Helv. Chim. Acta, 1951, 34, 971; Plešek, Coll. Czech. Chem. Comm., 1956, 21, 902; Pope and Woodcock, J., 1954, 1721; 1955, 577; Protiva, Jilek, Hach, Adlerová, and Mychajlyszyn, Chem. Listy, 1957, 51, 2109.

Rao and Dev, J. Indian Chem. Soc., 1956, 33, 561; 1959, 36, 1; Rao, Peterson, and van Tamelen, J. Amer. Chem. Soc., 1955, 77, 4327; Raphael, J., 1947, 805; Re and Schinz, Helv. Chim. Acta, 1958, 41, 1695, 1717; Rebstock, Crooks, Controulis, and Bartz, J. Amer. Chem. Soc., 1949, 71, 2458; Rumpf, Helv. Chim. Acta, 1952, 35, 2116.

Sakurai and Yoshino, J. Pharm. Soc. Japan, 1951, 71, 795; Samokhvalov, Miropol'skaya, Vakulova, and Preobrazhenskii, Trudy Vsesovuz. Nauch-Issledovatel. Vitamin. Inst., 1953, 4, 5; J. Gen. Chem. (U.S.S.R.), 1955, 25, 515; Sarycheva, Vorob'eva, and Preobrazhenskii, Zhur. obshchei Khim., 1957, 27, 2653; Sarycheva, Vorob'eva, Vasilenko, Vinokurova, Elkina, and Preobrazhenskiĭ, *ibid.*, 1955, **25**, 1775; Saucy, Chopard-dit-Jean, Guex, Ryser, and Isler, Helv. Chim. Acta, 1958, **41**, 160; Sauers, J. Amer. Chem. Soc., 1959, **81**, 925; Schäppi and Seidel, Helv. Chim. Acta, 1947, **30**, 2199; Schindler, Pharm. Acta Helv., 1948, **23**, 273; Schindler and Reichstein, Helv. Chim. Acta, 1942, **25**, 551; Schmid, *ibid.*, 1945, 28, 1195; Schöberl and Lange, Amalen, 1956, 599, 140; Schöberl and Wiehler, *ibid.*, 1955, 595, 101; Segre, Viterbo, and Parisi, J. Amer. Chem. Soc., 1957, 79, 3503; Seifert and Schinz, Helv. Chim. Acta, 1951, 34, 728; Seifert, Vogel, Rossi, and Schinz, *ibid.*, 1950, 33, 725; Shulgin, J. Amer. Chem. Soc., 1955, 77, 2338; Smith and Hernestam, Acta Chem. Scand., 1954, 8, 1111; Snow, J., 2054, 6599, Comp. Detrocomber 2054, 111; Snow, J., 2054, Jarolim, Novotný, Dolejš, and Herout, Coll. Czech. Chem. Comm., 1954, **76**, 4109; Šorm, Streibl, Jarolim, Novotný, Dolejš, and Herout, Coll. Czech. Chem. Comm., 1954, **19**, 570; Stadler, Nechvatal, Frey, and Eschenmoser, Helv. Chim. Acta, 1957, **40**, 1373; Stephens, Tatlow, and Wiseman, J., 1959, 148; Stiles and Libbey, J. Org. Chem., 1957, 22, 1243; Stoll, Helv. Chim. Acta, 1951, 34, 678; Stork and Burgstahler, J. Amer. Chem. Soc., 1955, 77, 5068; Stork, Wagle, and Mukharji, *ibid.*, 1953, 75, 3197; Sultanbawa and Veeravagu, J., 1958, 4113; Sutherland, J. Amer. Chem. Soc., 1953, 75, 5944;
 Sutherland and Wells, J. Org. Chem., 1956, 21, 1272; Sykes, Tatlow, and Thomas, J., 1956, 835.
 Talukdar and Bagchi, Science and Culture, 1953, 18, 503; J. Org. Chem., 1955, 20, 25; Tamura, Nippon Nógei-kagaku Kaishi, 1958, 32, 783; Tanabe, Pharm. Bull. (Japan), 1955, 3, 25; Tinker, J.

Amer Chem. Soc., 1951, 73, 4050.

Vaitiekunas and Nord, ibid., 1954, 76, 2737; van der Stelt and Nauta, Rec. Trav. chim., 1956, 75, 943; Vig, Kessar, Kubba, and Mukherji, J. Indian Chem. Soc., 1955, 32, 697; Vig, Maheshwary, and Mukherji, Research Bull. East Punjab Univ., 1953, No. 34, 107; Vig and Sandhu, Science and Culture, 1953, 19, 311; Vig, Sandhu, and Mukherji, J. Indian Chem. Soc., 1957, 34, 81; Ville, Comte, Zwingelstein, and Favre-Bonvin, Bull. Soc. chim. France, 1958, 1352; Vogel and Schinz, Helv. Chim. Acta, 1950, 33, 116; Volger and Arens, Rec. Trav. chim., 1958, 77, 1170; Weibull, Arkiv Kemi, 1951, 3, 225.

Wendler, Slates, Walker, and Tishler, Chem. and Ind., 1953, 617; Wiley and Ellert, J. Amer. Chem. Soc., 1957, 79, 2266; Williman and Schinz, Helv. Chim. Acta, 1949, 32, 2151; Winternitz and Balmossière, Tetrahedron, 1958, 2, 100; Bull. Soc. chim. France, 1958, 669; Winternitz, Antia, Tumlirova, and Lachazette, Bull. Soc. chim. France, 1956, 1817; Winternitz, Mousseron, and Ronzier, ibid., 1953, 190; 1954, 316; 1955, 170; Winternitz, Mousseron, and Trebillon, *ibid.*, 1949, 713; Winternitz, Mousseron, and Vinas, *ibid.*, 1952, 1035; Wladislaw, *Chem. and Ind.*, 1957, 263.

NATIONAL INSTITUTE FOR MEDICAL RESEARCH, MILL HILL, LONDON N.W.7.

[Received, February 27th, 1963.]